
Parallel Applications
Design with MPI

Science
Research
Challanges

• Killer applications

– Challenging use of computer power and storage

– Who might be interested in those applications?

– Simulation and analysis in modern science

Example:
Large Hadron
Collider as
(CERN)

• LHC Computing Grid

– Worldwide collaboration of > 170
computing centers in 34 countries

– Recording rate (raw) 1 GByte/sec

– Sum between 5 up to 8
PetaByte/year (1015 B/year)

– Estimated to be 200,000 faster than
some today’s fastest CPUs

– How can we get this working?

The need for
HPC

• Moore’s law

- In 1965 stated that transistor

density double at each 1.5 years

- A wrong assumption is that if

transistor density double than

computer gets twice as fast every

18/24 months

- This is wrong: the proof is that

today highest clocks don’t reach

20GHz

http://www.google.fr/imgres?imgurl=http://techreport.com/r.x/2009_12_3_Intel_shows_experimental_48core_singlechip_cloud_computer/48core_chip_il.jpg&imgrefurl=http://techreport.com/discussions.x/18066&usg=__Y4PJM4pHd7EDHcTr_-lWzDjmk04=&h=335&w=594&sz=126&hl=fr&start=15&um=1&itbs=1&tbnid=SEmXIczUkW2D0M:&tbnh=76&tbnw=135&prev=/images?q=silicon+die&um=1&hl=fr&sa=N&rls=com.microsoft:en-us:IE-SearchBox&tbs=isch:1

Can we use a
single
processor?

• Short answer is: no
– Curiously Moore’s law is still true

– Transistor densisty indeed doubles but higher clock rate leads to
unmanageable heat and power consumption

– Super computers are too expensive for medium size problems

– The solution is work with multiple processors at the same time

– If super computers are too expensive why not create a machine
clustering desktop solutions

Clusters
Computing

• Cluster of workstations
– Commodity PCs interconnected through a network
– More affordable than supercomputers
– Adaptable to any scale of usage
– Fast aquired popularity among researchers

• Timeline
– 1993: Beowulf project
– 1997: Berkley NoW is first cluster on top500
– 2010: 80 % of machines in top500 are clusters
– Source: www.top500.org

0
20
40
60
80

100

J
u
n
-9

7

A
p
r-

9
8

F
e
b
-9

9

D
e
c
-9

9

O
c
t-

0
0

A
u
g
-0

1

J
u
n
-0

2

A
p
r-

0
3

F
e
b
-0

4

D
e
c
-0

4

O
c
t-

0
5

A
u
g
-0

6

J
u
n
-0

7

A
p
r-

0
8

F
e
b
-0

9

D
e
c
-0

9

Programming
on a Cluster

• Applications must be rewritten

– Proccess communication changes

– Instead of memory must use the network

•Possible solutions

–Ad Hoc

– Work only for the platform it was designed for

–PVM

– Research project for heterogeneous network computing

– MPI

– It’s a standard, independent of implementation

– Have more than three free implementations

– Here we are going to talk about MPI

MPI –
Message
Passing
Interface• MPI in a nutshell

– It is a library specification

– Works natively with C and Fortran

– Not a specific implementation or product

–Scalable

– Must handle multiple machines

–Portable

– Sockets API change from one OS to another

– Handles Big-endian/little-endian architectures

– Efficient

– Optimized communication algorithms

– Allow communication and computation overlap

MPI –
Message
Passing
Interface

• MPI References

– Books

– Using MPI: Portable Parallel Programming with the
Message Passing Interface, by Gropp, Lusk, and
Skejellum, MIT Press, 1994.

– MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996.

– Parallel Programming with MPI, by Peter Pacheco,
Morgan Kaufmann, 1997.

– The standard:

– at http://www.mpi-forum.org

MPI
Programming

• MPI

– Use of a single program, on multiple data

– What does it do?

– way of identifying process

– Low-level independent API

– Optimized communication

– Allow communication and computation overlap

– What does it do not?

– gain performance of application for free

– application must be adapted

MPI
Programming

• Possible Programming Workflow

• A Few Parallel Strategies

• Master/Slave

• Pipeline

• Dvide and Conquer

Start from Working

Sequential Version

Choose a Parallel

Strategy

Implement It with

The Help of MPI

Split the Application

In Tasks

Parallel
Strategies

• Master/Slave

• Master is one process that centrilizes all tasks

•Slaves starve for work

MasterSlave 1 Slave 2

Request Request

Task 1 Task 2

Result 2

Finish

Result 1

Finish

Parallel
Strategies

• Master/Slave

• Master is often the bottleneck

• Scalability is limited due to centralization

• Possible to use replication to improve performance

• It is adatable to heterogenous platforms

Parallel
Strategies

• Pipeline

• Each process plays a specific role, pipeline stages

• Data follows in a single direction

• Parallelism is achieved when the pipeline is full

T
im

e

Task 1

Task 2

Task 3

Task 4

Parallel
Strategies

• Pipeline

• Scalabillity is limited by the number of stages

• Synchronization may lead to bubbles

• Slow sender

• Fast receiver

• Difficult to use on heterogenous platforms

Parallel
Strategies

• Divide and Conquer

• Recursevely partion task on roughly equal sized tasks

• Or process the taks if it is small

Work(60)

Work(40)

Work(20)Work(20)

Work(20)

Result(20)Result(20)

Result(40)

Result(20)

Result(60)

Parallel
Strategies

• Divide and Conquer

• More scalable

• Possible to use replicated branches

• In practice is difficult to split tasks

• Suitable for branch and bound algorithms

MPI
Programming

• Installing

– Some common MPI implementations, all free:

– OpenMPI

http://www.open-mpi.org/

– MPICH-2
http://www.mcs.anl.gov/research/projects/mpich2/

– LAM/MPI

http://www.lam-mpi.org/

MPI
Programming

• Installing

– I’m using MPICH-2

– Installed in Ubuntu 10.04 Lucid Lynx with

$ sudo apt-get install mpich2

– Should work for most Debian based distributions

– Must create a local configuration file

$ echo “MPD_SECRET_WORD=ChangeMe” > ~/.mpd.conf

MPI
Programming

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv){

/* Initialize MPI */
MPI_Init(&argc, &argv);

printf(“Test Program\n”);

/* Finalize MPI */
return MPI_Finalize();
}

• Test program

MPI
Programming

• Compiling

– Compiled with gcc, but a mpicc script is provided to invoke
gcc with specific MPI options enabled

$ mpicc mpi_program.c –o my_mpi_executable

– Executed with a specital script

$ mpirun –np 1 my_mpi_executable

$ mpirun –np 2 my_mpi_executable

$ mpirun –np 3 my_mpi_executable

MPI
Programming

• Running

– Compiled with gcc, but a mpicc wrapper is provided to
invoke gcc with specific mpi options

$ mpicc mpi_program.c –o my_mpi_executable

– For a complete list of parameters try

$ man mpicc

– Executed with a special wrapper

$ mpirun –np 2 my_mpi_executable

MPI
Programming

• Exercise 1 – Hello World

• Compile and run the simplest MPI program that only
prints the “Hello World” string and after exits

• Try vary the –np <nproc> parameter and observe the
differences

MPI
Programming

• How many proccess are running?

int MPI_Comm_size(MPI_Comm comm, int *psize)

– comm

– Group of process to communicate

– For grouping all process use MPI_COMM_WORLD

– psize

– Passed as reference will return the total amoung of
proccess in this communicator

MPI
Programming

• Exercise 2 – Number of Proccess

• Create program that prints the total number of
available process on the screen

• Vary the “–np <param>” to verify that your program
is working

MPI
Programming

• Assigning Process Roles

int MPI_Comm_rank(MPI_Comm comm, int *rank)

– comm

– Group of process to communicate

– To group all available process use MPI_COMM_WORLD

– rank

– Passed as reference will return the unique ID of the
calling process in this communicator

MPI
Programming

• Exercise 3 – Who am I?

•If I am process 0

• Prints: “hello world”

• else

• Prints: “I’m process <ID>”

• Replacing <ID> by the process rank

MPI
Programming

• Running on Grid5000 1/2

– Log in grid5000 using the instructions gave to you

$ ssh <username>@access.<frontend>.grid5000.fr

–Log in the front end of your choice

$ ssh <frontend>

– Make a reservation

$ oarsub -l nodes=4,walltime=1 –I

MPI
Programming

• Running on Grid5000 2/2

– When connected to a cluster in interactive mode a file with
the list o available machines is generated

$ cat $OAR_FILENODES

– Compile your code again

$ mpicc –o mybin myprogram.c

– Run MPI application

$ mpirun --mca plm_rsh_agent oarsh -machinefile
$OAR_FILENODES -np <nproc> mybin

MPI
Programming

• Exercise 4 – Running on a cluster

• Use your Grid5000 account to run the “Who am I?”
program in a real cluster

• Use the gethostname function to print the host name
where the process is running

MPI
One-to-one
Communication

• Synchronous/Blocking

– Process sits waiting for message to arrive

– Synchronization purpose

Proc 1 Proc 2

Recv()

Blocked

until message

arrives

T
im

e

Send(2)

Blocked

until message

arrives

MPI
Programming

• Blocking Send 1/2

int MPI_Send(void *buf, int count, MPI_Datatype dtype,

int dest, int tag, MPI_Comm comm)

– buf

– Pointer to the data to be sent

– count

– Number of data elements in buf

– dtype

– Type of elements in buf

MPI
Programming

• Blocking Send 2/2

int MPI_Send(void *buf, int count, MPI_Datatype dtype,

int dest, int tag, MPI_Comm comm)

– dest

– Rank of destination process

– tag

– Tag another integer to identify the message

– comm

– Same as before, for all proccess use MPI_COMM_WORLD

MPI
Programming

• Blocking Receive 1/2

int MPI_Recv(void *buf, int count, MPI_Datatype dtype,

int src, int tag, MPI_Comm comm, MPI_Status &status)

– buf

– Pointer where data will be received if succeed

– count

– Maximum number of elements that buf can handle

– dtype

– Type of elements in buf

MPI
Programming

• Blocking Receive 2/2

int MPI_Recv(void *buf, int count, MPI_Datatype dtype,

int src, int tag, MPI_Comm comm, MPI_Status &status)

– src

– Rank of sender process

– tag

– Message tag

– stat

– Sending process info, if desired can be ignored using
MPI_STATUS_IGNORE

MPI
Programming

• Exercise 5 (1/2) – Computing p by Monte Carlo Methods

2

1

1

Area of Circle =

p r 2 = p (1) 2 = p

A =
p

4
P(I) = A =

p

4

P(I) = (Inside/Total)*4

P(I) = (6/8)*4 = 3

MPI
Programming

• Exercise 5 (2/2) – Computing p by Monte Carlo Methods

• Generate two random numbers X, Y in [0,1]

• If (X*X + Y*Y) <= 1

• Add 1 to counter

• At the end use (counter/total)*4 as p approximation

• More random points generated more close to p

MPI
Programming

• Performance Evaluation

– Elapsed Time

– The timer itself

– Speedup

– How many times my application is faster than the sequential
version

– Efficiency

– Estimate processing power dissipation

MPI
Programming

• Timer

double MPI_WTime()

– RETURN

– The time passed,

in seconds, since

an arbitrary time

in the past

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv){

/* Initialize MPI */
MPI_Init(&argc, &argv);

t1 = MPI_WTime();
compute_pi();
t2 = MPI_WTime();
printf(“Elapsed time: %f\n”, t2 – t1);

/* Finalize MPI */
return MPI_Finalize();
}

MPI
Programming

• Performance Evaluation

– Speedup

– Obtained from elapsed time

– Ratio of elapsed time with one processor and elapsed time with
n processors

– Speedup(n) = T(1)

– T(1) = elapsed time with one processor

– T(n) = elapsed time with n processors

– The ideal is: Speedup(i) = i

– Meaning: using i processors I get i times faster

T(n)

MPI
Programming

• Performance Evaluation

– Efficiency

– It is obtained from speedup

– The efficiency shows the percentage of usage by processor

– Efficiency(n) = Speedup(n)

– Ideal is: Efficiency(i) = 1

– Meaning:

– Each processor is being used at 100%, no parallelization
overhead

n

MPI
Programming

• Exercise 6 – Performance Evluation of the p Problem

• Compute the elapsed time to compute 109 iterations
of Pi with:

• 1, 2, 4, 8, 10 processors

• Present speedup and efficiency

MPI
Programming

• Performance Evluation of the p Problem

• Elapsed Time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI
Programming

• Performance Evluation of the p Problem

• Speedup

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ideal

Speedup

MPI
Programming

• Performance Evluation of the p Problem

• Efficiency

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI
Programming

• Deadlock

– Two process, or more, are blocked waiting for the other

–The computation do not advance

MPI
Programming

• Deadlock

...

if(my_Rank == 0){
MPI_Recv(&tmp, 1, MPI_INT, 1, 122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);
MPI_Send(&dat, 1, MPI_INT, 1, 122, MPI_COMM_WORLD);

}

if(my_Rank == 1){
MPI_Recv(&tmp, 1, MPI_INT, 0, 122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);
MPI_Send(&dat, 1, MPI_INT, 0, 122, MPI_COMM_WORLD);

}

...

MPI
Programming

•Deadlock

• Can be solved proper ordering blocking calls

if(my_Rank == 0){
MPI_Recv(&tmp, 1, MPI_INT, 1, 122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);
MPI_Send(&dat, 1, MPI_INT, 1, 122, MPI_COMM_WORLD);

}

if(my_Rank == 1){
MPI_Send(&dat, 1, MPI_INT, 0, 122, MPI_COMM_WORLD);
MPI_Recv(&tmp, 1, MPI_INT, 0, 122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);

}

MPI
One-to-one
Communication

• Assynchronous/Non-Blocking Receive

– Process tries to receive, returns if there is no message

– Wait for the message is done using Wait

Proc 1 Proc 2

iRecv(&request)

T
im

e

iSend(2)

TCP_Wait(request)

Blocked

until message

arrives

Continue doing

computationContinue doing

computation

MPI
Programming

• Non-blocking Send and Receive

int MPI_Isend(..., MPI_Request &req)

– req

– Reference to the communication request, holds
information to use later

int MPI_Irecv(..., MPI_Request &req, MPI_Status &status)

– req

– Reference to the communication request, holds
information to use later

MPI
Programming

• MPI_Wait

int MPI_Wait(MPI_Status *status, MPI_Request *req)

– status

– Contains information about the received message can
be ignored using MPI_STATUS_IGNORE

– req

– Reference to the communication request, holds
information to use later

MPI
Programming

• MPI_Waitany

int MPI_Waitany(int count, MPI_Status *status[], int *index,
MPI_Request *req[])

– count

– Number process which are going to wait for

– status

– Array of statusus, to ignore use MPI_STATUS_IGNORE

– index

– Returns the index of the received request

– req

– Array of requests to wait for

MPI
Programming

• Exercise 7 –p Problem with MPI_Waitany

• Use MPI_Isend and MPI_Irecv instead of blocking
communication

• Use MPI_Waitany to receive messages efficiently

MPI
Collective
Communication

• Proccess master wants to send a message to everybody

– First solution, process master send N-1 messages

– Optimized collective communication send in parallel

T
im

e

Send(1)

Send(2)

Send(3)

T
im

e

Send(1)

Send(2) Send(3)
Constant

time to

send a

message

Broadcast

completed

in 3 slices

of time

Finishes in

2 slices of

time

Master Proc 1 Proc 2 Proc 3
Master Proc 1 Proc 2 Proc 3

MPI
Programming

• Broadcast

int MPI_Bcast(void* buffer, int count, MPI_Datatype
datatype, int root , MPI_Comm coom)

– root

– If (myrank == root) send the content of buffer else not
receive the content through buffer parameter

– It is the first process to send messages to the others

MPI
Programming

• Exercise 8 –p Problem with MPI_Bcast

MPI
Programming

• Collective reduce 1/2

int MPI_Reduce(void* *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

– sendbuf

– Data to be sent

– recvbuf

– Data to be received

– count

– Number of elements in sendbuf and recvbuf

– datatype

– Datatype of sendbuf and recvbuf elements

MPI
Programming

• Collective reduce 2/2

int MPI_Reduce(void* *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

– MPI_Op

– The arithmetic operation to execute some possible
values: MPI_MAX, MPI_MIN, MPI_SUM , MPI_PROD, and so
on STATUS_IGNORE

– root

– The same meaning as for MPI_Bcast

MPI
Programming

• Exercise 9 –p Problem with MPI_Reduce

• Use MPI_Isend and MPI_Irecv instead of blocking
communication

• Use MPI_Waitany to receive messages in the
efficientest order

MPI
Programming

• Conclusion

– MPI is useful and easy to program

– Well, at least easyer than sockets

– Have many vendor and free implementations

– It is optimized for different network architectures

– What we saw:

– Some of the MPI one-to-one and collective
communication API

– What we didn’t saw:

– A lot of stuff, MPI_Scatter, MPI_Barrier,
MPI_Get_processor_name, and so on...

MPI
Programming

• Future of MPI

– Exascale computing??

– 10^18 Flops/s

