L
A LE« - "

;. - mwg

PaaIIeI Appllcatlons
Design with MPI

u
Ty

4 “..

Science

s N M Research

O guun

LALLULE)

. "% Challanges

« Killer applications
— Challenging use of computer power and storage
- Who might be interested in those applications?

— Simulation and analysis in modern science

-

 Example:
Large Hadron
Collider as

(CERN)

o LHC Computlng Grid

— Worldwide collaboration of > 170
computing centers in 34 countries

— Recording rate (raw) 1 GByte/sec

— Sum between 5 up to 8
PetaByte/year (101> B/year)

— Estimated to be 200,000 faster than
some today’s fastest CPUs

- How can we get this working?

The need for

HPC

Moore’s law

- In 1965 stated that transistor —

Per Die

density double at each 1.5 years ¥

10°

- Awrong assumption is that if 108 a2 Process
transistor density double than ¢ Y pem o
computer gets twice as fast every ¥ oY g preMtum® Processor
386™ Processor
18/24 months Vo i 80286
: v 8008
- This is wrong: the proof is that 4 - e

today highest clocks don’t reach > @ Microprocessor

TP O T T U L
ZOG H Z 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.google.fr/imgres?imgurl=http://techreport.com/r.x/2009_12_3_Intel_shows_experimental_48core_singlechip_cloud_computer/48core_chip_il.jpg&imgrefurl=http://techreport.com/discussions.x/18066&usg=__Y4PJM4pHd7EDHcTr_-lWzDjmk04=&h=335&w=594&sz=126&hl=fr&start=15&um=1&itbs=1&tbnid=SEmXIczUkW2D0M:&tbnh=76&tbnw=135&prev=/images?q=silicon+die&um=1&hl=fr&sa=N&rls=com.microsoft:en-us:IE-SearchBox&tbs=isch:1

Can we use a
single
processor?

Short answer is: no
Curiously Moore’s law is still true

Transistor densisty indeed doubles but higher clock rate leads to
unmanageable heat and power consumption

Super computers are too expensive for medium size problems
The solution is work with multiple processors at the same time

If super computers are too expensive why not create a machine
clustering desktop solutions

0 Clusters

Nlo oo o T A M I OO D

S Q@ 9 9IRRLRIYIRYIIRRIQ 'n
cls o o DS 590 08B DDC 59 O CII'pt g
S|S0 0 R 55200 LRSS 20 0 O utl
SI< L A0S <L AaO0Ox»s <UL A

e Cluster of workstations
— Commodity PCs interconnected through a network
— More affordable than supercomputers
— Adaptable to any scale of usage
— Fast aquired popularity among researchers

e Timeline
— 1993: Beowulf project
— 1997: Berkley NoW is first cluster on top500
— 2010: 80 % of machines in top500 are clusters
- Source: www.top500.0rg

Programming

ﬁf on a Cluster
s must be rewritten

— Proccess communication changes
— Instead of memory must use the network

ePossible solutions
—Ad Hoc
— Work only for the platform it was designed for
-PVM
— Research project for heterogeneous network computing
- MPI
— It's a standard, independent of implementation
— Have more than three free implementations
— Here we are going to talk about MPI

- MPI -
Message
Passing

Interface

— It is a library specification
— Works natively with C and Fortran
— Not a specific implementation or product
—Scalable
— Must handle multiple machines
—Portable
— Sockets API change from one OS to another
— Handles Big-endian/little-endian architectures
— Efficient
— Optimized communication algorithms
— Allow communication and computation overlap

Message

HP Passing

T B 1 it

* MPI References Interface
— Books

- Using MPI: Portable Parallel Programming with the
Message Passing Interface, by Gropp, Lusk, and
Skejellum, MIT Press, 1994.

- MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996.

— Parallel Programming with MPI, by Peter Pacheco,
Morgan Kaufmann, 1997.

— The standard:
— at http://www.mpi-forum.org

MPI
Programming

PSR
e MPI
— Use of a single program, on multiple data
- What does it do?

- way of identifying process

- Low-level independent API

— Optimized communication

- Allow communication and computation overlap
- What does it do not?

— gain performance of application for free

— application must be adapted

MPI
Programming

Start from Working Split the Application

Sequential Version In Tasks

‘ Choose a Parallel
Strategy

e A Few Parallel Strategies

e Master/Slave

e Pipeline Implement It with
_ The Help of MPI
e Dvide and Conquer

Parallel
Strategies

o Master/ Slave

e Master is one process that centrilizes all tasks

eSlaves starve for work

Request Request
u < Task 1 t Task 2
Result 1 Result 2
& Finish Finish , Ga®

Slave 1 Master Slave 2

Parallel
Strategies

e Master/Slave

e Master is often the bottleneck
e Scalability is limited due to centralization
* Possible to use replication to improve performance

e It is adatable to heterogenous platforms

Parallel
Strategies

@ Task 1
() Task 2
» Each process plays a specific role, pipeline stages gg Task 3

L -)
» Data follows in a single direction Task 4

e Parallelism is achieved when the pipeline is full

— w — U
[g)

 ——

awIL

Parallel
Strategies

b, .-x

‘e Pipeline

e Scalabillity is limited by the humber of stages
e Synchronization may lead to bubbles

* Slow sender

» Fast receiver

o Difficult to use on heterogenous platforms

Parallel
Strategies

* Recursevely partion task on roughly equal sized tasks

e Or process the taks if it is small Result(60)

Work(60)

Result(40)

bix
wolko) " s
i i

[A—
Work(20)
Result(20)

& Result(20) Result(20) cEms
Work(20) Work(20)

Parallel
Strategies

K D|V|de and Conquer

e More scalable
* Possible to use replicated branches
* In practice is difficult to split tasks

e Suitable for branch and bound algorithms

MPI
Programming

- Some common MPI implementations, all free:
- OpenMPI
http://www.open-mpi.org/

— MPICH-2
http://www.mcs.anl.gov/research/projects/mpich2/

- LAM/MPI
http://www.lam-mpi.org/

MPI
Programming

e Installing
— I'm using MPICH-2
— Installed in Ubuntu 10.04 Lucid Lynx with
$ sudo apt-get install mpich2

— Should work for most Debian based distributions
— Must create a local configuration file
$ echo “MPD_SECRET_WORD=ChangeMe” > ~/.mpd.conf

S—

e Test program

MPI
Programming

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv){

/* Initialize MPI */
MPI_Init(&argc, &argv);

printf(“Test Program\n®);

/* Finalize MPI */
return MPI_Finalize();

}

MPI
Programming

e Compiling

— Compiled with gcc, but a mpicc script is provided to invoke
gcc with specific MPI options enabled

$ mpicc mpi_program.c -o my_mpi_executable

- Executed with a specital script
$ mpirun -np 1 my mpi_executable
$ mpirun -np 2 my mpi_executable
$ mpirun -np 3 my mpi_executable

MPI
Programming

e Running

— Compiled with gcc, but a mpicc wrapper is provided to
invoke gcc with specific mpi options

$ mpicc mpi_program.c -o my_mpi_executable

— For a complete list of parameters try
$ man mpicc

— Executed with a special wrapper
$ mpirun -np 2 my mpi_executable

Programming

e Exercise 1 — Hello World

e Compile and run the simplest MPI program that only
prints the “"Hello World” string and after exits

e Try vary the —np <nproc> parameter and observe the
differences

Programming

« How many proccess are running?

int MPI_Comm_size(MPI_Comm comm, int *psize)
— comm

— Group of process to communicate

— For grouping all process use MPI_COMM_WORLD
— psize

— Passed as reference will return the total amoung of
proccess in this communicator

Programming

e Exercise 2 — Number of Proccess

e Create program that prints the total number of
available process on the screen

e Vary the "—np <param>" to verify that your program
is working

MPI
Programming

» Assigning Process Roles

int MPI_Comm_rank(MPI_Comm comm, int *rank)
— comm

— Group of process to communicate

— To group all available process use MPI_COMM_WORLD
— rank

— Passed as reference will return the unique ID of the
calling process in this communicator

Programming

My B B

: Exercise 3 — Who am I?
oIf I am process O
e Prints: “hello world”
e else
e Prints: “I'm process <ID>"

e Replacing <ID> by the process rank

- L MPI
l Programming

e Runnihg on Grid5000 1/2

- Log in grid5000 using the instructions gave to you
$ ssh <username>@access.<frontend>.grid5000.fr

—-Log in the front end of your choice
$ ssh <frontend>

— Make a reservation
$ oarsub -1 nodes=4,walltime=1 -I

Programming

e Runmng on Gr|d5000 2/2

- When connected to a cluster in interactive mode a file with
the list o available machines is generated

$ cat $OAR_FILENODES

- Compile your code again
$ mpicc -o mybin myprogram.c

— Run MPI application

$ mpirun --mca plm_rsh_agent oarsh -machinefile
$0OAR_FILENODES -np <nproc> mybin

Programming

e Exercise 4 — Running on a cluster

e Use your Grid5000 account to run the "Who am I?”
program in a real cluster

o Use the gethostname function to print the host name
where the process is running

MPI
One-to-one
Communication

» Synchronous/Blocking
— Process sits waiting for message to arrive
— Synchronization purpose

Proc 1 Proc 2
Send(2) Recv()
Blocked
until message
arrives
Blocked e

— until message

§' arrives

D

MPI
Programming

e Blocking Send 1/2
int MPI_Send(void *buf, int count, MPI Datatype dtype,

int dest, int tag, MPI_Comm comm)
— buf
— Pointer to the data to be sent
— count
— Number of data elements in buf
- dtype
— Type of elements in buf

MPI
Programming

e Blocking Send 2/2
int MPI_Send(void *buf, int count, MPI Datatype dtype,

int dest, int tag, MPI_Comm comm)
— dest
— Rank of destination process
— tag
— Tag another integer to identify the message
— comm
— Same as before, for all proccess use MPI_COMM_WORLD

MPI
Programming

* Blocking Receive 1/2

int MPI_Recv(void *buf, int count, MPI Datatype dtype,

int src, int tag, MPI_Comm comm, MPI_Status &status)
— buf

— Pointer where data will be received if succeed
— count

- Maximum number of elements that buf can handle
- dtype

- Type of elements in buf

MPI
Programming

* Blocking Receive 2/2
int MPI_Recv(void *buf, int count, MPI Datatype dtype,

int src, int tag, MPI_Comm comm, MPI_Status &status)
- src

— Rank of sender process
— tag

- Message tag
- stat

- Sending process info, if desired can be ignored using
MPI_STATUS_ IGNORE

MPI
Programming

e Exercise 5 (1/2) — Computing 7U by Monte Carlo Methods

1 _T P() = A=2X
| | 4 O 4

J 2
Area of Circle = P(l) = (Inside/Total)*4
nri=ng(1)2=n P(l)= (6/8)*4 =3

Programming

e Exercise 5 (2/2) — Computing 7U by Monte Carlo Methods

* Generate two random numbers X, Y in [0,1]
o If (X*X + Y*XY) <=1
e Add 1 to counter

o At the end use (counter/total)*4 as 7t approximation

e More random points generated more close to 1t

MPI
Programming

e Performance Evaluation

— Elapsed Time
— The timer itself

— Speedup

— How many times my application is faster than the sequential
version

— Efficiency
— Estimate processing power dissipation

double MPI_WTime()
— RETURN
- The time passed,
in seconds, since
an arbitrary time
in the past

MPI
Programming

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv){

/¥ Initialize MPI */
MPI_Init(&argc, &argv);

t1 = MPI_WTime();

compute_pi();

t2 = MPI_WTime();

printf(“Elapsed time: %f\n”, t2 - t1);

/¥ Finalize MPI */
return MPI_Finalize();

}

Programming

— Speedup

— Obtained from elapsed time

— Ratio of elapsed time with one processor and elapsed time with
N processors

— Speedup(n) = T(1)
T(n)
— T(1) = elapsed time with one processor
— T(n) = elapsed time with n processors
— The ideal is: Speedup(i) =i
— Meaning: using i processors I get i times faster

MPI
Programming

2N RS

e Performance Evaluation
— Efficiency
— It is obtained from speedup
— The efficiency shows the percentage of usage by processor

— Efficiency(n) = Speedup(n)
n

— Ideal is: Efficiency(i) = 1
— Meaning:

— Each processor is being used at 100%, no parallelization
overhead

Programming

e Exercise 6 — Performance Evluation of the 7U Problem

o Compute the elapsed time to compute 10° iterations
of Pi with:

o1, 2,4, 8, 10 processors

* Present speedup and efficiency

MPI
Programming

e Performance Evluation of the 7U Problem

e Elapsed Time

120

100 ‘
80 \

60 \

40 \

Programming

e Performance Evluation of the 7U Problem

* Speedup ——ldeal

== Speedup

18
16
14

. f
10

O N b OO ©

MPI
Programming

e Performance Evluation of the 7U Problem

e Efficiency

100.00% -
90.00% ~
80.00% ~
70.00% -
60.00% -
50.00% -
40.00% -
30.00% ~
20.00% ~
10.00% -

0.00%

10

11

12

13

14

15

16

MPI
Programming

e Deadlock

— Two process, or more, are blocked waiting for the other

-The computation do not advance

MPI
Programming

e Deadlock

if(my_Rank == 0){
MPI_Recv(&tmp, 1, MPI_ INT, 1, 122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);
MPI_Send(&dat, 1, MPI INT, 1, 122, MPI_COMM_WORLD);

}

if(my_Rank == 1){
MPI_Recv(&tmp, 1, MPI_INT,
MPI_Send(&dat, 1, MPI_INT,

(W)
-

122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);
122, MPI_COMM WORLD);

(W)
-

Programming

eDeadlock

e Can be solved proper ordering blocking calls

if(my Rank == 0){
MPI_Recv(&tmp, 1, MPI_INT, 1, 122, MPI_COMM WORLD, MPI_IGNORE_STATUS);
MPI_Send(&dat, 1, MPI_INT, 1, 122, MPI_COMM _WORLD);

}

if(my Rank == 1){
MPI_Send(&dat, 1, MPI_INT, ©, 122, MPI_COMM_WORLD);
MPI_Recv(&tmp, 1, MPI_INT, ©, 122, MPI_COMM_WORLD, MPI_IGNORE_STATUS);

awlL

MPI

One-to-one
Communication

e Assynchronous/Non-Blocking Receive

— Process tries to receive, returns if there is no message
- Wait for the message is done using Wait

Proc 1

Continue doing
computation

iSend(2)

Proc 2
iRecv(&request)

Continue doing
computation

TCP_Wait(request)
Blocked

until message
arrives

Programming

Lol

* Non-blocking Send and Receive

int MPI_Isend(..., MPI_Request &req)
- req

— Reference to the communication request, holds
information to use later

int MPI_Irecv(..., MPI_Request &req, MPI Status &status)
- req

— Reference to the communication request, holds
information to use later

MPI
Programming

e MPI_Wait

int MPI_Wait(MPI_Status *status, MPI_Request *req)
— status

— Contains information about the received message can
be ignored using MPI_STATUS_TIGNORE

- req

— Reference to the communication request, holds
information to use later

MPI
Programming

e MPI_Waitany
int MPI_Waitany(int count, MPI_Status *status[], int *index,
MPI_Request *req[])

— count
- Number process which are going to wait for
— status
— Array of statusus, to ignore use MPI_STATUS IGNORE
— index
— Returns the index of the received request
- req
— Array of requests to wait for

Programming

e Exercise 7 —7U Problem with MPI_Waitany

e Use MPI_Isend and MPI_Irecv instead of blocking
communication

* Use MPI_Waitany to receive messages efficiently

Collective
Communication

* Proccess master wants to send a message to everybody Finishes in

— First solution, process master send N-1 messages 2 slices of
time

— Optimized collective communication send in parallel
Master proc1 proc2 Proc 3 Master proc1 proc2 Proc3 \
—
3
@

Send(1) Send(1)

Send(2) \Send(B)
\

RN

Send(2) Constant

time to

\ 1 ' senda
\

message

> Broadcast
N completed
in 3 slices
of time

Send(3)

[1/

awiL

MPI
Programming

e Broadcast

int MPI_Bcast(void* buffer, int count, MPI_Datatype
datatype, int root , MPI_Comm coom)

— root

- If (myrank == root) send the content of buffer else not
receive the content through buffer parameter

— It is the first process to send messages to the others

MPI
Programming

e Exercise 8 —7U Problem with MPI_Bcast

MPI
Programming

e Collective reduce 1/2

int MPI_Reduce(void* *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI_Comm comm)

— sendbuf
— Data to be sent
— recvbuf
— Data to be received
— count
- Number of elements in sendbuf and recvbuf
— datatype
— Datatype of sendbuf and recvbuf elements

MPI
Programming

e Collective reduce 2/2

int MPI_Reduce(void* *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI_Comm comm)

- MPI_Op

— The arithmetic operation to execute some possible
values: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, and so
on STATUS_IGNORE

— root
— The same meaning as for MPI_Bcast

Programming

e Exercise 9 —7U Problem with MPI_Reduce

e Use MPI_Isend and MPI_Irecv instead of blocking
communication

* Use MPI_Waitany to receive messages in the
efficientest order

MPI
Programming

— MPI is useful and easy to program

— Well, at least easyer than sockets

- Have many vendor and free implementations

— It is optimized for different network architectures
— What we saw:

— Some of the MPI one-to-one and collective
communication API

— What we didn’t saw:

— A lot of stuff, MPI_Scatter, MPI_Barrier,
MPI_Get_processor_name, and so on...

e Future of MPI

— Exascale computing??
- 10”18 Flops/s

