
Super Computing and Distributed Systems Camp
Catay, Santander, Colombia
August 15-22, 2010

Super Computing and Distributed Systems Camp
Catay, Santander, Colombia
August 15-22, 2010

Introduction to OpenMP Programming

Robinson Rivas Suarez
robinson.rivas@ciens.ucv.ve

Universidad Central de Venezuela

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

Agenda

• What OpenMP stands for?
• Differences between OpenMP and MPI
• Parallel Regions
• Tags for parallel work
• Data sharing
• Explicit synchronization
• Scheduling Instructions

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• OpenMP IS:
• Compiler directives and a library for

multithread programming
• Available for Fortran and C/C++, several

companies involved
• Support for parallel data model
• Incremental parallelism
• Combines serial and parallel code in the same

source
• Simple: it allows to run our serial code without

modificactions (almost)

3

OpenMP at a glance

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

•OpenMP IS NOT:

• A library for message-passing programming

• Available for any major language

• Suitable for high-scale parallelism, i.e.
programming over the grid

• 100% portable: programs must be re-
compiled over new architectures. OpenMP
exploits architecture-dependant advantages

4

OpenMP at a glance

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• MPI uses the message passing paradigm, i.e., distributed memory.
OpenMP uses fork-join model on shared memory

• MPI can exploit massive parallelism over hundreds or thousands of
nodes. OpenMP uses physical access on relatively small number of
cores

• Due to its nature, none of MPI nor OpenMP are deterministic.

• OpenMP have scheduling instructions. MPI doesn’t have it.

BUT: in real world, OpenMP and MPI does not compete!! They
interact with each another to take advantages of specific

architectures.

5

OpenMP vs MPI

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

A more detailed comparison

6

OpenMP vs MPI

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010 7

OpenMP at a glance

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

C$OMP DO lastprivate(XX)

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

http://www.openmp.org
Current specification is about 250 pages

(C/C++ and Fortran)

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010 8

OpenMP at a glance

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• fork-join model

• Construction blocks for parallel execution

• Construction blocks for data scope
management

• Construction blocks for synchronization

• API (Application Program Interface) for
programming tuning

9

OpenMP architecture

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010 10

OpenMP architecture

Parallel Regions

Master

Thread

fork-join model:
• Master thread divides itself in sub-threads as it is needed

• Incremental parallelism: sequential code becomes parallel
depending on problem’s conditions

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Most of OpenMP blocks are really
compiler directives. In C/C++ they
are called pragmas. Syntax is:

#pragma omp construct [clause [clause]…]

11

OpenMP syntax

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Pragma parallel defines a parallel
region on an structured code
• Threads created using this prgama,
synchronizes at the end of the block
• By default, data is shared inside this
region

12

Parallel regions

C/C++ :
#pragma omp parallel

{
code

}

#pragma omp parallel

Thread
1

Thread
2

Thread
3

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• The environment variable defines how many
threads we will create.

set OMP_NUM_THREADS=4

• There is not default for this. In most systems,
of threads = # of cores. However, you can
define more threads than physical cores.

• Intel® compilers uses this standard

13

How many threads?

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

Use the pragma to parallelize this code

int main()
{
 hello();
}

int hello()
{
 int i;

 for(i=0;i<10;i++)
 {
 printf(“Hello World!!\n”);
 sleep(1)
 }
}

14

Example

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

int main()
{
#pragma omp parallel
 hello();
}

int hello()
{
 int i;

 for(i=0;i<10;i++)
 {
 printf(“Hello world!!\n”);
 sleep(1)
 }
}

15

Solution

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

#pragma omp parallel
#pragma omp for
for (i=0; i<N; i++){
Do_Work(i);
}

• Divide iterations among processors
• Must be inside the parallel region
• Must precede the for clause

16

Parallel for

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

#pragma omp parallel
#pragma omp for
 for(i = 0; i < 12; i++)
 c[i] = a[i] + b[i]

17

Parallel for

• Each thread asigned with
a number of iterations.
• Iterations are asigned

with round-robin policy
• Programmer must deal

with possible side effects
• There is an implicit barrier

at the end of threads

#pragma omp parallel

#pragma omp for

Implicit Barrier

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• This two codes are equivalent

18

Parallel for

#pragma omp parallel
{
 #pragma omp for
 for (i=0; i< MAX; i++)
 { res[i] = huge();
 }
}

#pragma omp parallel for
 for (i=0; i< MAX; i++)
 { res[i] = huge();
 }

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• OpenMP uses shared memory as
default model

• Most of variables are shared by
default

• Global variables are always shared
• User can modify the behavior of

variables, except for global ones

19

Data sharing

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Some exceptions apply to data sharing:
– Local variables of functions called from

parallel regions are private
–Variables defined inside parallel blocks

are private
– Index variables of for statements are by

default private

C/C+: the first variable of the for after
the #pragma omp for is private

20

Data sharing

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Default status can be modified

default (shared | none)
• Data scope attributes

shared(varname,…)

private(varname,…)

21

Data sharing

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• In case of private variables, compiler
assigns one variable per thread

• Thread variables are language and
compiler dependant, thus,
inicialization, dafault values and
space depends on compiler spec

22

Data scope

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Given a=[1,2,3,4,5,6], b=[2,4,6,8,10,12] and N=6

• What values do this code generates if Processors are 2, 3?

• What happens if x,y are NOT private?

23

Example

void* work(float* c, int N)
 { float x, y; int i;
#pragma omp parallel for private(x,y)
 for(i=0; i<N; i++)
 {x = a[i]; y = b[i];
 c[i] = x + y;
 }
 }

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010 24

Example

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Inner product: do this code work?

25

Example

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
#pragma omp parallel for shared(sum)
 for(int i=0; i<N; i++) {
 sum += a[i] * b[i];
 }
 return sum;
}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• In many cases, public access to variables is
dangerous, because different threads can
modify erroneously the values. In this case,
it is necessary to define a critical region for
those values that need to be protected

• OpenMP provides a pragma to define
critical regions

#pragma omp critical [(lock_name)]

26

Critical regions

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Inner product revisited

27

Example

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
#pragma omp parallel for shared(sum)
 for(int i=0; i<N; i++) {
#pragma omp critical
 sum += a[i] * b[i];
 }
 return sum;
}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• In a critical region, threads waits its
turn to execute the line(s) of code
defined in the inner block.

• Programmer can assign a name to
each critical region. This could lead to
better performance when code is
executed

28

Critical regions

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

float R1, R2;
#pragma omp parallel
{ float A, B;
#pragma omp for
 for(int i=0; i<niters; i++){

 B = big_job(i);
#pragma omp critical(R1_lock)
 consum (B, &R1);

 A = bigger_job(i);
#pragma omp critical (R2_lock)
 consum (A, &R2);

 }
}

29

Example

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Critical regions must be used carefully. In the worst
case, a bad usage of critical pragma could lead to
a serial execution

• Not every code works well with critical. Imagine

for(int i=0; i<N; i++) {
 sum = a[i];
#pragma omp critical
 sum += a[i] * b[i];
 }

30

Critical regions

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Usually, critical pragma is not the best
solution due to bottlenecks. Reduction
is a better alternative.

• Reduction allows programmers to put
in a single variable the join result of a
series of calculations.

• This permits threads to use private
variables, and reduce them to a
shared variable at the end of the
execution

31

Reduction

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Reduction pragma:
reduction (op : list)

• Variables in “list” must be in shared mode
inside the parallel region

• When reduction code begins, each thread
makes a copy of the variables, and
initializes them depending on the operator
op

• Once threads finalize its execution, they
puts the final value using op operator in a
single shared copy of the variable.

32

Reduction

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• In this example, each thread has their own
copy of sum

• All the copies of sum are added together at the
end of the computation, in a single “global”
variable in the master thread

Reduction

33

#pragma omp parallel for reduction(+:sum)
 for(i=0; i<N; i++)
 { sum += a[i] * b[i];
 }

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

•OpenMP defines a series of both
commutative and associative
operators
• Initial values for variables are
assigned depending on neutral
element for operation

Reduction

34

Op Initial value

+ 0

* 1

- 0

^ 0

Op Initial value

& ~0

| 0

&& 1

|| 0

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• A known problem!!!

Example

35

4.0

2.0

1.00.0 X

Given

then
dx

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

static long num_steps=100000; double step, pi;

void main()

{ int i;

 double x, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0; i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0 + x*x);

 }

 pi = step * sum;

 printf(“Pi = %f\n”,pi);

}}

Numeric Integration

36

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Parallelize this
code thinking
on:
– Variables to

share
– Variables to

reduce

Example

37

static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x, sum = 0.0;

 step = 1.0/(double) num_steps;
 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Some times, the amount of time used for
iterations is not uniform for all cases. For
instance, random values or I/O problems
can affect the time used by each processor

• So, it is good idea to have a way to decide
how to assign the values of iteration
indexes to different processes

• Example: think in a gas simulation. None of
the particles spend the same time to
calculate its energy

Scheduling

38

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• schedule clause defines how to assign
the values to processors

schedule(static [,chunk])
Each thread is assigned with the same “chunk” size values,

using round-robin policy

schedule(dynamic[,chunk])
Each thread takes “chunk” values to iterate. After processing

those values, the thread takes more “chunk” values

schedule(guided[,chunk])
• Dynamic planning, beginning with the bigger “chunk”.

Scheduling

39

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• When to use scheduling?

Scheduling

40

Schedule Use it when…

STATIC Each iteration is suposed to
spent the same time

DYNAMIC Unpredictable, threads have
non deterministic behavior

GUIDED Same as dynamic, but more
efficient scheduler

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Example of schedule clause

• In this case, every thread has 8 values to
search for. Note that programmer must
know the size of both chunk an iterations.
Portions are distributed statically

Scheduling

41

#pragma omp parallel for schedule (static, 8)
 for(int i = start; i <= end; i += 2)
 {
 if (TestForPrime(i)) gPrimesFound++;
 }

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Example of schedule clause

• In this case, every thread have chunks of
size 5 for the first time. Then, new
executions takes portions of 5 values once
they finish partial executions

Scheduling

42

#pragma omp parallel for schedule (dynamic, 5)
 for(int i = start; i <= end; i += 2)
 {
 if (TestForPrime(i)) gPrimesFound++;
 }

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Example of schedule clause

• In this case, compiler decides the size of
chunks and this size decreases
exponentially. It is often more efficient
than dynamic behavior

Scheduling

43

#pragma omp parallel for schedule (guided, 8)
 for(int i = start; i <= end; i += 2)
 {
 if (TestForPrime(i)) gPrimesFound++;
 }

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

Scheduling

44

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Not only iterations can be
parallelized. Also,
independent sections of
code can be defined as
parallel with sections
clause

Parallel sections

45

#pragma omp parallel sections

{

 #pragma omp section

 phase1();

 #pragma omp section

 phase2();

 #pragma omp section

 phase3();

}

Serial Parallel

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Defines a section inside a parallel code that
must be executed by only one thread

• It is not defined which thread will execute the
section

• At the end there is an implicit barrier

“single” clause

46

#pragma omp parallel
{
 DoManyThings();
#pragma omp single
 {
 ExchangeBoundaries();
 } // threads wait here for single
 DoManyMoreThings();
}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Indicates a section that must be
executed specifically by the master
thread

• There is not an implicit barrier at the
end

“master” clause

47

#pragma omp parallel
{
 DoManyThings();
#pragma omp master
 { // if not master, then skip to next stmt
 ExchangeBoundaries();
 }
 DoManyMoreThings();
}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Programmer can define explicit
barriers, so threads must wait until all
threads finish their execution

barriers

48

#pragma omp parallel shared (A, B, C)
{

DoSomeWork(A,B);
printf(“Processed A into B\n”);

#pragma omp barrier
DoSomeWork(B,C);
printf(“Processed B into C\n”);

}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Some OpenMP clauses uses implicit
barriers
• parallel
• for
• single

• However, this barriers could lead to
performance problems

• If it is safe enough, you can use the nowait
clause

barriers

49

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• What do this example do?

barriers

50

#pragma omp parallel
{
#pragma omp for schedule(dynamic,1) nowait
 for(int i=0; i<n; i++)
 a[i] = bigFunc1(i);

#pragma omp for schedule(dynamic,1)
 for(int j=0; j<m; j++)
 b[j] = bigFunc2(j);
}

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• It is often useful to know who I am and how many we
are in terms of threads

• MPI users use this information to decide what parts of
code must be executed by each thread. In OpenMP,
API have instructions to give this information

• In this cases, there must be a header include
#include <omp.h>

API

51

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• To obtain the id of the thread inside a
parallel section (equivalent to
MPI_comm_rank)

int omp_get_thread_num(void);

• To obtain the total number of threads in
an execution (equivalent to
MPI_comm_size)

int omp_get_num_threads(void);

API

52

Super Computing and Distributed Systems Camp - Catay, Santander, Colombia - August 15-22, 2010

• Write a program that uses OpenMP to
find:
– The average value of a series of real

numbers
– The maximum and minimum of a series

of real numbers
– A solution for matrix product in C

Challenge

53

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

