

2010

Super Computing and
Distributed Systems Camp
Programming Contest

Catay, Santander, Colombia, August 15 ~ 22 Page 1

INSTRUCTIONS

This contest is designed to be solved by teams of at most four (4) students, in a

maximum time of four (4) hours. You can use any of C, C++, Java or FORTRAN

programming languages, with MPI and/or OpenMP libraries.

Each problem gives you one point if it is correctly solved using MPI, OpenMP or

both, and you provide a sequential version of your solution with the same core

algorithm.

The winner team is the team with more problems solved in four (4) hours. If two

or more teams have the same number of problems solved, the winner is the team with

the best performance. Performance is decided by judges, using the speedup formula:

 running the programs on the same architecture. The best overall

Speedup over all the executions is the winner, between the teams with the same

number of problems solved.

Feel free to ask the judges about the problems. OpenMP and MPI documentation

is available: feel free to ask the judges in any moment.

Have Fun!

Catay, Santander, Colombia, August 15 ~ 22 Page 2

PROBLEM A
BOMBING FIELD

 Statement

 In a very far, far away country, the Military Command (MC) is planning how to destroy an
enemy battlefield. However, in the same field is located a populated area, so they must be very
careful.
 In a simulated scenario, the battlefield is described as a square area of N x N yards,
where 100 ≤ N ≤ 1000.

In this simulated scenario, Military Targets (MT) are marked as negative numbers, where
the number describes the “strength” of the target. So, a -8 target is stronger than an -2 one.
Civilian Targets (CT) are marked in the same fashion, but using positive integers. So, a CT with
8 is more important than a CT with 2. Yards with no interest, are marked with 0.

The MC experts program a series of attacks, with special bombs that can destroy square
areas. Each of such bombs, have two (2) parameters: the size of the area to destroy and the
power itself. Power is an integer number, so its effect on the field is to decrease the number of
each yard affected by the bomb in “power” units, if the yard is a CT, and to increase the
damage, in the case of MT.

After a number of attacks, MC wants to know:

 How many MT where totally destroyed

 How many MT where partially destroyed, i.e., final number is lower than 0

 How many MT were not touched

 Hoh many CT where affected partially by the bombing

 How many CT where totally destroyed

 How many CT where not touched
Your mission is to write a parallel program that helps MC to obtain such information

Input Format

Simulated scenarios values are to be read from standard input. The first number
describes the size N of battlefield. In the second line, there is a number T of targets, including
both CT and MT. Then, T lines, with three integers: coordinates X, Y (0 ≤ X,Y ≤ N-1) and the

value of the target (positive for CT, negative if a MT).
After T lines, a number B describes the number of attacks planned by the MC. Each

attack is defined by four numbers: coordinates X, Y (0 ≤ X,Y ≤ N-1), size R of the square radius
of the bomb, and the power P of the bomb. Square radius means: given the X and Y coordinates
of the bomb, each yard within (X-R,Y-R) and (X+R,Y+R) is affected by the bomb in P units.

The number B of attacks has no limits, and certain X,Y coordinates could be repeated.

Bombs have effect only in the battlefield, so coordinates less than 0 or greater than N-1 must
not be considered.

It’s guaranteed there are at least one CT and one MT. None MT nor CT shares the same
X,Y coordinates.

Catay, Santander, Colombia, August 15 ~ 22 Page 3

Output Format

After B attacks, you must write on standard output:

Military Targets totally destroyed: A

Military Targets partially destroyed: B

Military Targets not affected: C

Civilian Targets totally destroyed: D

Civilian Targets partially destroyed: E

Civilian Targets not affected: F

Example

Input:

10

4

0 0 8

5 5 100

1 1 -2

7 7 -6

5

2 1 2 3

1 1 1 4

7 7 0 3

6 6 4 8

9 9 8 1

Output for the input example:

Military Targets totally destroyed: 2

Military Targets partially destroyed: 0

Military Targets not affected: 0

Civilian Targets totally destroyed: 0

Civilian Targets partially destroyed: 2

Civilian Targets not affected: 0

Catay, Santander, Colombia, August 15 ~ 22 Page 4

PROBLEM B
WEIRD PUZZLE

 Statement

A popular cross-word game is to find words inside a square matrix, in any of vertical or

horizontal directions. A weird version of this puzzle is when we must find the words even if they
are sparse along a line. i.e., find all the letters of the word in the right order in the same vertical
or horizontal line, but there could be additional letters in between. For instance, in this version
the word winner is considered to be in the line “a r e h n t n i a s w g”

Moreover, words can be in different directions (right to left, upper to lower and vice-
versa) and they can wrap around the matrix, it means that a word beginning at the right most
side of the matrix, can finalize at the left side of the matrix, and the same for vertical direction.

For instance, the word contest is considered to be in the line “a t e r s t c k o n q”.

Your challenge if to find at most different words as you can, given a square matrix of
letters, and a list or words. You must simply have to show the number of different words found.

Input Format

Matrixes and words are to be read from standard input. The first number describes the

size N of square matrix of letters, 1 ≤ N ≤ 1000. The next N lines have the content of each row
of the puzzle, containing N letters of the English alphabet, lowercase.

After the N lines, it is an integer representing the number W of words. Then, W lines, one

word per line, lowercase. No entire words will be repeated, and it is guaranteed no words are
sub-strings of another one.

Output Format

The output is simply an integer, representing the number of different words you find

inside the puzzle. Note that a word could appear more than once, in such case, you have to
count only the first time the word is found.

Example

Input:
5

aocde

adrft

wkdig

wabgt

ooooo

4

ooo

ar

bw

wc

Output for the Input example:
3

Catay, Santander, Colombia, August 15 ~ 22 Page 5

PROBLEM C

YET MORE PRIMES

 Statement

Primal test is a common task in many applications, specially for security, cryptography,

and other interest areas. There are many techniques used to verify if a number is prime, and the
common problem is that all techniques consumes lots of time.

The problem is easy to solve, giving the number to be tested and time enough to
calculate. But a weird scientist took our numbers, and cut them in two halves, so we have first to
re-arrange the numbers, looking for the primes. In this case, we have the certainty that all the

numbers we have are primes, but the problem is how to re-order them

Input Format

Numbers will be read from standard input. In the first line, there is the number P of prime

numbers (1 ≤ P ≤ 100). Then, P lines with the first half of the numbers to be tested, with no
order. Next, P lines with the second half of the numbers, with no order. Prime numbers in this
problem are taken as strings, so first half and second half simply means an arbitrary cut of such
string. For instance, prime number 504155039 can be cut in 5041 and 55039, or 504155 and
039

Note that second half numbers could begin with a lead zero, so you must take it into
account.

Output Format

You have to print the list of the P prime numbers, in the same order of the first half.

 Example

Input:
4
50415
100

5041

55750

01

0213

5039

55713

Output for the Input example:
504155039

1000213
504155713

5575001

