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● Use of parallel computing to model complex 
processes, structures or problems. E.g.,
– Social cognition

– Biological species interactions

– Physical particles system behavior

– Economy

– ...

Motivation



  

Motivation

● Complex problems and complexity
– Problems with a large number of diverse, dynamic 

and interdependent elements

– Complexity: use of space and time; model's 
effectiveness



  

Motivación

● Problema complejo
– Fuzzy boundaries 

– Some parameters are unstable or 
unpredictible

– Experimentation is difficult or expensive

– A solution set is not known, only non-
satisfactory approximations

– Many stakeholders are involved, who 
have distinct viewpoints, interests and 
objectives

– There is no unique, optimal solution for 
all

– There is no well-defined halt condition

● Other problems
– Well-defined boundaries; can be 

abstracted in families or universal types

– Parameteres are stable or predictible

– Experimentation is easy

– There exists a well-defined solution set

– Stakeholders participate that share a 
common viewpoint, interests and 
objectives on the problem

– An optimal solution for all can be found

– That solution is easily recognizable



  

Motivation

● Goal → Build a description, explanation or 
prediction of the behavior of a complex process, 
structure or problem
– A computational model

– based on distributed computing

– that describes, explains or predicts the behavior of 
a set of individuals (objects or subjects) that are 
part of the process, structure or problem



  

Terminology

● Problem: process, structure, problem, etc.
(whatever it is that you want to model)
– Object anything involved in the problem

– Agent a computational model of any 
(agentive) object involved in the 
problem

– Environment the set of objects that represent all 
the agentive and non-agentive 
objects in the problem (also 
domain, millieu or society)



  

Distributed computing

● Some advantages
– Adaptability changes in the individuals result in changes 

in the model

– Redundance the ability for continuous operation and 
recovery after failures in one or more 
elements (individuals) of the model

– Specialization agents dedicated to the resolution of 
specific parts or aspects of the problem

– Efficiency gain due to parallel processing

– Economy (of the individuals): don't need every agent 
to know all the relevant information



  

Distributed computing

● Some disadvantages
– Reliability it is not always possible to buold a system 

in such a way that it recovers from the 
failure of one or more agents;

– Diagnóstico the task of determining which agent or 
agents contribute with error to a solution is 
non-trivial

– Comunicación some problems might require intensive 
inter-agent communication; with large 
number of connections among agents, 
communication needs can eliminate or even 
turn into loss, the expected win in efficiency 
due to parallelization



  

Distributed computing

● Principles
– Load distribution:

● In N simpler machines
– Massive processing:

● N machines operating simultaneously to solve each one 
pieces of aspects of the problem

– Interconnection or communication system:
● The N machines share information through 

communication channels or protocols



  

Distributed computing

● Issues
– Balanced load distribution

– Control of the problem solving process: which agents, in 
which situations, should assume control?

– Concurrency: access and use of shared resources

– Organization or “social” structure: decision making regime of 
a group or society of agents



  

Distributed computing

● Multiagent systems as models of distributed 
computing

Agents   ↔   Processors, nodes

Societies   ↔   Networks

Communication system   ↔   Protocols

Organization   ↔   Architecture



  

The problem

● How to use multiagent systems to model 
complex problems?
– Focus on the system complex problem or system dynamics, 

rather than on the objects involved

– Model by agent type (roles, functions, responsibilities, 
actions, etc.)

– Define a set of parameters to describe a possible situation or 
state of the problem, and define its initial value and how 
each of them changes due to agent action and agent-agent 
interaction



  

The problem

● The model should make inferences about
– The causes of certain behavior of the system or its agents

– The properties of the system or of the problem from agent 
properties and interactions

– The individual differences

– The interdependence relationships among agents 



  

The problem statement

● Build a distributed system, based on the notion 
of agent, that simulates a complex process or 
problem
– Design decisions:

● Asign task types to agent types (who does what)
● Define an information distribution scheme (who knows 

and has access to what)
● Design the communication system (types of interactions, 

participants, message exchange, protocol interpretation)



  

Agents

● Agent

Ag := ( Sit(Ag), Act(Ag), Dat(Ag) ), where

● Sit(Ag) is a description of a situation or a problem for 
agent Ag

– Basic representation: attribute-value vectors

● Act(Ag) is the set of actions that can be carried out by 
agent Ag in situation Sit(Ag)

– Basic representation: forward-chaining rules, from situations to actions 
(and their effects)

● Dat(Ag) is the contents “owned” by agent Ag (its internal 
knowledge)



  

Agents

● Agent actions according to their scope

Act(Ag) := Act_own(Ag) + Act_pub(Ag), where

● Act_own(Ag) contains the actions of agent Ag that are 
invisible to others in the environment

– Reasoning, decision making, ...

● Act_pub(Ag) contains the actions of agent Ag that are 
visible to others, and thus are called “public”

– Communication actions, actions on the environment, ...



  

Agents

● Agent actions according to their trigger

Act(Ag) := Demand(Ag) + Proactive(Ag), where

● Demand(Ag) := Sit(Ag) x Act(Ac)
– Actions that take place whenever necessary

● Proactive(Ag) := Sit(Ag) x Dat(Ag) x Act(Ag)
– Proactive actions, i.e., started at agent Ag's initiative



  

Agents

● The multiagent system's environment

Env := ( A, C, M, S ), donde

● A : the set of agents
● C : the context (partial representation of the world or 

domain of the multiagent system)
● M : the memory shared by all agents
● S := (S1, ..., Sn), where each Si is a family of subsets of 

A, and all families are organized in a tree structure (called 
the system's social organization or structure)



  

Agents

● Properties of the environment
– Accesible agents may or may not know the current 

state of the environment

– Deterministic each agent action has or has not a 
predictible effect; degree of certainty about 
that effect

– Episodic in an episodic environment, each agent's 
performance can be observed and 
assessed on a number of discrete episodes

– Dynamic the environment is characterized by being 
dynamic if its state changes with time and 
the agents' actions



  

Agents

● 2 kinds of agents
– Human

– Computational

● Desired properties
– Autonomy

– Efficient organization



  

What's in an agent?

● Identity
– Name

– Attribute descriptions

● Roles and responsibilities
– Methods

– Action rules

– Interpretation rules



  

What's in an agent?

● Previous knowledge
– Information about facts, object descriptions, concepts, 

beliefs

● Objective function
– Preferences

– Methods

– Acceptance / rejection criteria for solutions



  

What's in an agent?

● Knowledge about others
– Models about the identity, roles, responsibilities, previous 

knowledge, objective function, etc., of other agents

● Knowledge about the environment
– Social organization rules

– Communication / interaction protocols

– Facts, norms, laws, regulations, etc.



  

Social Organization

● Social organization :=
Social structure + Social action system

– Social structure
● Hierarchical: master-slave, contract networks, etc.
● Horizontal: alliances, coalitions, etc.

– Social action system
● Social roles, affiliation
● Communication and interpretation (BDI)
● Interaction
● Negotiation-in-context
● Command and report, ...



  

Development Tools

● Ascape – framework and runtime environment, Java API, 
available as Eclipse plugin, SDK, stand-alone Jar, Applet Jar
(http://ascape.sourceforge.net/) 

● Cougaar – Java-based architecture, focused on scalability
(http://www.cougaar.org/) 

● JADE – Java Agent Development Framework
(http://jade.tilab.com/) 

● Repast – Java-based modeling and simulation platform; Repast 
Simphony 2.0 beta; Repast for HPC 1.0.1 beta, Dec. 2010
(http://repast.sourceforge.net/) 

● NetLogo – MAS simulator, education-oriented
(http://ccl.northwestern.edu/netlogo/) 



  

Examples

● Ant lines – followers follow a leader by going directly to its 
position as perceived in each clock tic

● Fireflies – example of synchronization in distributed systems; 
fireflies perceive other fireflies' flashes and reset their own 
“cycles” to match those of the fireflies in their nearest vicinity

● Wolf-Sheep Predation – predator-prey ecosystem stability 
analysis

● Dining Philosophers – synchronization of concurrent 
processes (several independent processes coordinate 
the use of shared resources)



  

¡¡ Muchas gracias !!
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