

2nd Supercomputing and Distributed Computing Camp
Turrialba, Costa Rica, 10-16 de julio del 2011

Computación distribuida y
sistemas multiagente

Prof. Dr. Alvaro de la Ossa
delaossa@cenat.ac.cr

Contents

● Motivation, terminology
● Distributed computing
● The problem
● Problem features and approaches
● Discussion

● Use of parallel computing to model complex
processes, structures or problems. E.g.,
– Social cognition

– Biological species interactions

– Physical particles system behavior

– Economy

– ...

Motivation

Motivation

● Complex problems and complexity
– Problems with a large number of diverse, dynamic

and interdependent elements

– Complexity: use of space and time; model's
effectiveness

Motivación

● Problema complejo
– Fuzzy boundaries

– Some parameters are unstable or
unpredictible

– Experimentation is difficult or expensive

– A solution set is not known, only non-
satisfactory approximations

– Many stakeholders are involved, who
have distinct viewpoints, interests and
objectives

– There is no unique, optimal solution for
all

– There is no well-defined halt condition

● Other problems
– Well-defined boundaries; can be

abstracted in families or universal types

– Parameteres are stable or predictible

– Experimentation is easy

– There exists a well-defined solution set

– Stakeholders participate that share a
common viewpoint, interests and
objectives on the problem

– An optimal solution for all can be found

– That solution is easily recognizable

Motivation

● Goal → Build a description, explanation or
prediction of the behavior of a complex process,
structure or problem
– A computational model

– based on distributed computing

– that describes, explains or predicts the behavior of
a set of individuals (objects or subjects) that are
part of the process, structure or problem

Terminology

● Problem: process, structure, problem, etc.
(whatever it is that you want to model)
– Object anything involved in the problem

– Agent a computational model of any
(agentive) object involved in the
problem

– Environment the set of objects that represent all
the agentive and non-agentive
objects in the problem (also
domain, millieu or society)

Distributed computing

● Some advantages
– Adaptability changes in the individuals result in changes

in the model

– Redundance the ability for continuous operation and
recovery after failures in one or more
elements (individuals) of the model

– Specialization agents dedicated to the resolution of
specific parts or aspects of the problem

– Efficiency gain due to parallel processing

– Economy (of the individuals): don't need every agent
to know all the relevant information

Distributed computing

● Some disadvantages
– Reliability it is not always possible to buold a system

in such a way that it recovers from the
failure of one or more agents;

– Diagnóstico the task of determining which agent or
agents contribute with error to a solution is
non-trivial

– Comunicación some problems might require intensive
inter-agent communication; with large
number of connections among agents,
communication needs can eliminate or even
turn into loss, the expected win in efficiency
due to parallelization

Distributed computing

● Principles
– Load distribution:

● In N simpler machines
– Massive processing:

● N machines operating simultaneously to solve each one
pieces of aspects of the problem

– Interconnection or communication system:
● The N machines share information through

communication channels or protocols

Distributed computing

● Issues
– Balanced load distribution

– Control of the problem solving process: which agents, in
which situations, should assume control?

– Concurrency: access and use of shared resources

– Organization or “social” structure: decision making regime of
a group or society of agents

Distributed computing

● Multiagent systems as models of distributed
computing

Agents ↔ Processors, nodes

Societies ↔ Networks

Communication system ↔ Protocols

Organization ↔ Architecture

The problem

● How to use multiagent systems to model
complex problems?
– Focus on the system complex problem or system dynamics,

rather than on the objects involved

– Model by agent type (roles, functions, responsibilities,
actions, etc.)

– Define a set of parameters to describe a possible situation or
state of the problem, and define its initial value and how
each of them changes due to agent action and agent-agent
interaction

The problem

● The model should make inferences about
– The causes of certain behavior of the system or its agents

– The properties of the system or of the problem from agent
properties and interactions

– The individual differences

– The interdependence relationships among agents

The problem statement

● Build a distributed system, based on the notion
of agent, that simulates a complex process or
problem
– Design decisions:

● Asign task types to agent types (who does what)
● Define an information distribution scheme (who knows

and has access to what)
● Design the communication system (types of interactions,

participants, message exchange, protocol interpretation)

Agents

● Agent

Ag := (Sit(Ag), Act(Ag), Dat(Ag)), where

● Sit(Ag) is a description of a situation or a problem for
agent Ag

– Basic representation: attribute-value vectors

● Act(Ag) is the set of actions that can be carried out by
agent Ag in situation Sit(Ag)

– Basic representation: forward-chaining rules, from situations to actions
(and their effects)

● Dat(Ag) is the contents “owned” by agent Ag (its internal
knowledge)

Agents

● Agent actions according to their scope

Act(Ag) := Act_own(Ag) + Act_pub(Ag), where

● Act_own(Ag) contains the actions of agent Ag that are
invisible to others in the environment

– Reasoning, decision making, ...

● Act_pub(Ag) contains the actions of agent Ag that are
visible to others, and thus are called “public”

– Communication actions, actions on the environment, ...

Agents

● Agent actions according to their trigger

Act(Ag) := Demand(Ag) + Proactive(Ag), where

● Demand(Ag) := Sit(Ag) x Act(Ac)
– Actions that take place whenever necessary

● Proactive(Ag) := Sit(Ag) x Dat(Ag) x Act(Ag)
– Proactive actions, i.e., started at agent Ag's initiative

Agents

● The multiagent system's environment

Env := (A, C, M, S), donde

● A : the set of agents
● C : the context (partial representation of the world or

domain of the multiagent system)
● M : the memory shared by all agents
● S := (S1, ..., Sn), where each Si is a family of subsets of

A, and all families are organized in a tree structure (called
the system's social organization or structure)

Agents

● Properties of the environment
– Accesible agents may or may not know the current

state of the environment

– Deterministic each agent action has or has not a
predictible effect; degree of certainty about
that effect

– Episodic in an episodic environment, each agent's
performance can be observed and
assessed on a number of discrete episodes

– Dynamic the environment is characterized by being
dynamic if its state changes with time and
the agents' actions

Agents

● 2 kinds of agents
– Human

– Computational

● Desired properties
– Autonomy

– Efficient organization

What's in an agent?

● Identity
– Name

– Attribute descriptions

● Roles and responsibilities
– Methods

– Action rules

– Interpretation rules

What's in an agent?

● Previous knowledge
– Information about facts, object descriptions, concepts,

beliefs

● Objective function
– Preferences

– Methods

– Acceptance / rejection criteria for solutions

What's in an agent?

● Knowledge about others
– Models about the identity, roles, responsibilities, previous

knowledge, objective function, etc., of other agents

● Knowledge about the environment
– Social organization rules

– Communication / interaction protocols

– Facts, norms, laws, regulations, etc.

Social Organization

● Social organization :=
Social structure + Social action system

– Social structure
● Hierarchical: master-slave, contract networks, etc.
● Horizontal: alliances, coalitions, etc.

– Social action system
● Social roles, affiliation
● Communication and interpretation (BDI)
● Interaction
● Negotiation-in-context
● Command and report, ...

Development Tools

● Ascape – framework and runtime environment, Java API,
available as Eclipse plugin, SDK, stand-alone Jar, Applet Jar
(http://ascape.sourceforge.net/)

● Cougaar – Java-based architecture, focused on scalability
(http://www.cougaar.org/)

● JADE – Java Agent Development Framework
(http://jade.tilab.com/)

● Repast – Java-based modeling and simulation platform; Repast
Simphony 2.0 beta; Repast for HPC 1.0.1 beta, Dec. 2010
(http://repast.sourceforge.net/)

● NetLogo – MAS simulator, education-oriented
(http://ccl.northwestern.edu/netlogo/)

Examples

● Ant lines – followers follow a leader by going directly to its
position as perceived in each clock tic

● Fireflies – example of synchronization in distributed systems;
fireflies perceive other fireflies' flashes and reset their own
“cycles” to match those of the fireflies in their nearest vicinity

● Wolf-Sheep Predation – predator-prey ecosystem stability
analysis

● Dining Philosophers – synchronization of concurrent
processes (several independent processes coordinate
the use of shared resources)

¡¡ Muchas gracias !!

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28

