Large Scalable Systems and Architectures

Carlos Jaime Barrios Hernandez

Supercomputing and Distributed Systems Camping School

Turrialba, Costa Rica 2011
Implicit parallelism is a characteristic of a programming language that allows a compiler or interpreter to automatically exploit the parallelism inherent to the computations expressed by some of the language's constructs.

Explicit parallelism is the representation of concurrent computations by means of primitives in the form of special-purpose directives or function calls.

Concurrency is a property of systems in which several computations are executing simultaneously, and potentially interacting with each other.
Plan

- General Concepts
- Parallel Computing
 - Basics
- Distributed Computing
- Large Scale Systems
 - Cluster
 - Grid Computing
 - Volunteer Computing
 - Cloud
- Final Comments
Scalable Systems

- Any scalable system is a distributed system.
- Parallel computing uses Scalable Systems
 - Many instructions are carried out simultaneously—concurrently.
 - High Performance Computing (HPC) implies Parallel Computing
- Scalable Systems may be describe in terms of Scalable Architectures.
Scalable Architectures

- Scalable Architectures (hardware point of view) have the characteristics of Scalable Systems.
 - Concurrency, Distribution
- Scalable Architectures support Parallel Computing.
- Of course, Parallel Computing implies parallelism.
- Obviously, Parallel Computing demands Parallel Machines.
Parallel Computing

- Parallel Computing exploit Concurrency
 - In “system” terms, concurrency exists when a problem can be decomposed in sub problems that can safely executed at same time (in other words, concurrently)
Flynn’s Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>Single Instruction</th>
<th>Multiple Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Data</td>
<td>SISD</td>
<td>MISD</td>
</tr>
<tr>
<td>Multiple Data</td>
<td>SIMD</td>
<td>MIMD</td>
</tr>
</tbody>
</table>
Comparing Flynn’s Taxonomy

S Proposed by M. Flynn in 1966
Further Taxonomy
(Derivate from MIMD for distributed memory programming)

- **SPMD (Single Program, Multiple Data streams or Single Process, Multiple Data)**
 - Multiple autonomous processors simultaneously executing the same program on different data.
 - It is the most common taxonomy.

- **MPMD (Multiple Program Multiple Data)**
 - Multiple autonomous processors simultaneously operating at least 2 independent programs.
Main Memory in Parallel Machines is a hybrid between shared memory and distributed memory.

Distributed memory systems have Non-Uniform Memory Access (NUMA) architecture.
Multicores

- Multicore Computer:
 - Multicore Processor includes multiple execution units (cores)
 - Intel’s Dual Core, Intel’s QuadriCore
 - Play Station 3
Symmetric Multiprocessing

- Symmetric multiprocessors:
 - A symmetric multiprocessor (SMP) is a computer system connected to a main shared memory.
 - Intel’s Xeon.
 - Sun Microsystems UltraSPARC.
Massive Parallel Processing (MPP)

- Computer system with many independent arithmetic units or entire microprocessors, that run in parallel
- MPPA is a MIMD (Multiple Instruction streams, Multiple Data) architecture, with distributed memory accessed locally, not shared globally
Others Parallel Computers

- Reconfigurable Computing with Field-Programmable Gate Arrays (FPGA).
- General-Purpose Computing on Graphics Processing Units (GPGPU).
 - Programming with CUDA and OpenCL (i.e.)
- Application-Specific Integrated Circuits (ASIC).
- Vector Processors. (SIMD)
Distributed Computers

- **Distributed computing:**
 - Distributed Computing is a Distributed Memory Multiprocessor System connected by a network.
 - Distributed computers are highly scalable!
 - Cases of Distributed Computing:
 - Cluster computing (Parallel Distributed Computing)
 - Grid Computing
Large Scale Architectures

- Large Scale Architecture (LSA) allows to trait large scale problems.
 - LSAs need Large Scale Sotware
 - LSAs are distributed systems.
 - Cluster Computing Platform
 - Grid Computing Infrastructure
 - The Fault tolerance is a critical problem in LSA systems.
Cluster Computing Architecture

Middleware
(Single System Image and Availability Infrastructure)

Operating System
PC/Workstation/Node
Communications Software
Network Interface Hardware

Interconnection Network/Switch
Grid Computing

- Grid Computing implies technology, technics and methodology to support Parallel* / Distributed Computing.
- Grid Computing needs Grid Computing Infrastructure and dedicated and high disponibility networks or interconexion.
- Different Types or Possibilities:
 - Experimental Testbeds
 - Production Grids
 - Lightwigth Grids
 - Desktop Grid Computing (May be Lightwith too)
Grid Computing Features:

- Infrastructure
 - High Availability
 - High Performance
 - Heterogeneity
 - Pervasive
 - Scalability

- Methodology
 - Different User Levels
 - Multi Administration

- Politics
 - Security
 - Use
 - Privacy

Grid Computing Architecture (Typical Diagram)

[*]From http://gridcafe.web.cern.ch
Grid Computing Architecture
(Remember the Cluster Architecture)

Middleware
(Single System Image and Availability Infrastructure)

Parallel Applications

Sequential Applications

Parallel Applications

Parallel Programming Environment

Interconnection Network/Switch
Grid Computing Architecture and the Middleware

Parallel Applications

Middleware (Single System Image)

PC/Workstation/Cluster/Devices/Sensors
- Communications Software
- Network Interface Hardware

PC/Workstation/Cluster/Devices/Sensors
- Communications Software
- Network Interface Hardware

Parallel Programming Environment

Sequential Applications

Interconnection Network/Switch

PC/Workstation/Cluster/Devices/Sensors
- Communications Software
- Network Interface Hardware

PC/Workstation/Cluster/Devices/Sensors
- Communications Software
- Network Interface Hardware

[*]From http://gridcafe.web.cern.ch
Grid Computing Architecture

<table>
<thead>
<tr>
<th>APPLICATION PORTALS & FRAMEWORKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB GRID SERVICES</td>
</tr>
<tr>
<td>APPLICATIONS AND UTILITIES</td>
</tr>
<tr>
<td>LANGUAGE SPECIFIC APIs</td>
</tr>
<tr>
<td>GRID COLLECTIVE SERVICES</td>
</tr>
<tr>
<td>GRID COMMON SERVICES</td>
</tr>
<tr>
<td>COMMUNICATION SERVICES</td>
</tr>
<tr>
<td>SECURITY SERVICES</td>
</tr>
<tr>
<td>RESOURCES MANAGERS</td>
</tr>
<tr>
<td>PHYSICAL RESOURCES</td>
</tr>
</tbody>
</table>

[*]From: Grid Computing: Making The Global Infrastructure a Reality
Grid5000 (G5K)

- G5K has 5000 processors distributed in 9 sites France wide, for research in Grid Computing, eScience and Cyber-infrastructures.
- G5K project aims at building a highly reconfigurable, controlable and monitorable experimental Grid platform.
GISELA

[Map showing institutions in Europe and Latin America and the Caribbean with associated institutions listed (e.g., INFN, CNRS, INNOVA-T, REUNA, CLARA, UFRJ, UCG, CUBAENERGIA, CEDIA, CLARA, CIDETYS, RAAP, and ULA).]
Volunteer Computing

- Volunteer computing is a type of distributed computing in which computer owners donate their computing resources (such as processing power and storage) to one or more "projects".
 - BOINC (Seti@home)
 - Xgrid
 - GridMP
- Associated with P2P
- Can be associated with High Throughput Computing (HTC) or High Performance Computing (HCP)
XGrid Architecture

1. Client submits job to Controller
2. Controller splits job into tasks, then submits tasks to Agents
3. Agents execute tasks
 - Dedicated agent
 - Cluster agent
 - Screensaver agent
4. Agents return tasks to Controller
5. Controller collects tasks and returns job results to Client
BOINC Architecture

Server
- MySQL DB
- Web Site (PHP)
- Work Generator (C++, BOINC API)
- Data Servers (HTTP)
- Scheduler (C++)

Client
- BOINC Client demon (BOINC API)

Rosetta@home
Protein Folding, Design, and Docking
Cloud Computing

- Internet-based computing, whereby shared resources, software, and information are provided to computers and other devices on demand.
- Cloud computing describes a new supplement, consumption, and delivery model for IT services based on the Internet, and it typically involves over the Internet—provision of dynamically scalable and often virtualized resources.
Cloud Computing Features and Issues

- **Agility**: rapidly and inexpensively re-provision technological infrastructure resources.

- **Cost**

- **Device and location independence**

- **Multi-tenancy**
 - Centralization of infrastructure in locations with lower costs
 - Peak-load capacity increases
 - Utilization and efficiency improvements for systems.

- **Reliability**: improved if multiple redundant sites are used

- **Scalability via dynamic ("on-demand")**:
 - Resources on a fine-grained, self-service basis near real-time.
 - Performance is monitored, and consistent and loosely coupled architectures are constructed using web services as the system interface.

- **Security and Safety**

- **Maintenance**: Applications are easier to maintain

- **Metering** cloud computing resources usage should be measurable and should be metered.

- **Privacy**

- **Compliance (Data Protection Directives)**

- **Legal (Trademarks, Licenses)**

- **Open Source**

- **Security**

- **Safety**

- **Sustainability** (cloud computing is often assumed to be a form of "green computing")
Cloud computing, typically involves multiple cloud components communicating with each other over application programming interfaces, usually web services.

- Platforms as a service
- Infrastructure as a service
Cloud Computing Deployment Types

- Private Cloud
 - Resources are dynamically provisioned on a fine-grained, self-service basis over the Internet, via web applications/web services

- Public Cloud
 - Resources are dynamically provisioned on a fine-grained, self-service basis over the Internet, via web applications/web services

- Community Cloud
 - Established where several organizations have similar requirements and seek to share infrastructure

- Hybrid Cloud

- InterCloud
 - Cloud of Clouds
Final Comments

- Guidelines to Parallel and Distributed Programming (should) require identify Patterns
 - Finding Concurrency
 - Algorithm Structure
 - Supporting Structures
 - Implementation Mechanisms
 - Supported Platforms and Infrastructures
 - Problems need minds, minds need applications, applications need platforms, platforms need infrastructure.