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“"The exact region a parallel application

occupies depends on the problem®”.
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® Architectural Considerations to Parallel Programming (PP)
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® PP Models

® PP Quantitative Considerations




Architectural
Considerations to PP

® Remember "concurrency”: it exploits betterthe resources
(shared) within a computer.

® Exploit SIMD and MIMD Architectures
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Architectural Considerations to PP

Shared Memory
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Parallelism
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Parallel Programming
Models

® PP Environments
® BasicTools
® Language Features

® APIs (Application Programming Interfaces)

e Parallel Programs are extremely dependents of
Parallel Systems (Architectures)

e Often, Parallel Programs are not portable between
parallel computers



PP Models

® Shared Memory e Distributed Memory (Shared)
e OpenMP o MPI

* Hybrid Combination
— OpenMP + MPI
— CUDA, OpenCL, JAVA

Common Problems:

* Thrashing: Simultaneous Processors are simultaneous Attempting to write into the same cache line,
which can cause the cache link to ping pong between two different caches.

*False Sharing: Data Structures are attended in the same cache blocks

*Cache coherence (Overloading)

*Data Placement (Overlapping)

Latency Growing (in accordance with the distance among processors)



Some Definitions
(Reminder)

Task: Sequence of Instructions that operates together
as a group.

Unit Execution (UE): Unit where atask is mapped
(Process orThread)

® Process: Collection of Resources that enables the
execution of program instructions

Processing Elements (PEs): Hardware element that
executes a system of instructions



Some Concepts (To Explore)

® Load Balancing: (Interms of distribution among PEs)

® Static or Dynamic

® Synchronization: (Interms of Task and Process)

® Synchronous or Asynchronous

® Race Condition:

e® Outcome changes as the relative UE scheduling

e Deadlock:

e Each task of the cycle of tasks is blocked waiting for
another proceed.



PP Quantitative Bases

® Total Running Time (Sequential-Serial View):
T(2)=T +T +T

setup compute finalization

* Total Running Time (Parallel Idealized View):
T(P)=T + T(1)
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PP Quantitative
Considerations

® Relative Speedup (S): How much faster aproblemruns
in a way that normalizes away torunning time.

e Efficiency: Speedup Normalized by the number of PEs.
® Perfect Linear Speedup: S(P) = PEs.

® SerialTerms:Terms that cannot be run concurrently.

® Serial Fraction (y): Running times of the serialterms.

® Parallelizable fraction of a program is (1 —y)



Amdahl’s and
Gustafson’s Laws

e Amdahl's law:

® Speedup application due to parallel
computingis limited by the sequential
part of the application.

® Motivates task-level parallelization

® Gustafson’s law:

e Any sufficiently large problem can be
effectively parallelized.

John L. Gustafson: Reevaluating Amdahl’s law. In Communication of ACM,
Volume 31(5) 532-533, 1988



Parallel Programming and
Computation Thinking

e PP Goals (Reminder)
® Solve a problem in lesstime.
e Solve bigger problems in a determinedtime.
e Achieve better solutionsfor problems in a determinedtime.

e Good Candidatesfor Parallel Computing (Reminder):
e Large Problem Sizes (Large Scale Problems)
e High Complexity
e High Modeling

Programmers “build code ” and "organize data”to solve subproblems
concurrently.

Computational Thinking thought process of formulating domain problems in
terms of computation steeps and algorithms.



Methodical Design of Parallel
Algorithms

® Partitioning: Decomposition into

small tasks. PROBLEM

® Communication: Coordination of
task executions.

® Agglomeration. Task and e CW
communication structures

defined inthe first two stages of a
design are evaluated with respect agglomerate
to performancerequirements and
implementation costs.

® Mapping. Eachtaskis assigned to
a processor in amanner that
attempts to satisfy the competing

goals of maximizing processor %
utilization and minimizing /
communication costs. d

map

From http://www.mcs.anl.gov/~itf/dbpp/




Problem
Decomposition

® Decomposing calculation work into units of parallel
executions

® Finding parallelism in large computational problems is
often conceptually simple but can turn out to be
difficult in practice.

e Keyistoidentifythe workto be performed by each
unit of parallel executions

® Inherent parallelism of the problem is well utilized



Problem
Decomposition

® Decomposition is necessary to mapped
® Decomposition defines granularity

® Decomposition produces:
® Latency Costs
® More Complexity (In general terms)
® Load balancing needs

® Scheduling needs (To allocate, communicate,
transferring)

e Data Management needs



Algorithm Selection

® Algorithm Properties

e Definiteness:
® [Fachstepisprecisely stated.

e Effective Computability
® Fach stepcan be carried out by a computer.

® Finiteness
® Algorithm must be guaranteed toterminate.

® Algorithm Features

® Number of steeps
e Degree of parallel execution
e Bandwidth (Among Process)



Algorithm Selection

e ComputerArchitecture

e Memory Organization, Caching and locality, Memory
Bandwidth, Instructions mode (single-instruction or
multiple thread or single programs), data classes (single
data or multiple data executions), floating point
precision, accuracy (tradeoffs between algorithms).

® Programming Models and Compilers

e Parallel Execution Models, Types of available memories,
array data layouts, loop transformations (Data
structures and loop strructures)



Algorithm Selection

® Algorithm Techniques
e Tiling, cutoff, binning (scalability, efficiency)

® Domain Knowledge

® Numerical Methods, Models, accuracy requirements,
mathematical properties, phenomena/problem
knowledge (Application of Algorithms)



Design Spaces of Parallel
Programming’

e Finding Concurrency (Structuring Problem
to expose exploitable concurrency)

e Algorithm Structure (Structure Algorithm
to take advantage of Concurrency)

e Supporting Structures (Interfaces
between Algorithms and Environments)

e Implementation Mechanisms (Define
IM Programming Environments)

ePatterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004



Finding Concurrency
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Image from: Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004



Algorithm Structure

Finding Concurrency
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Supporting Structures

Finding Concusrrency
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Implementation
Mechanisms

Finding Concurrency
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Final Notes

e Often, ComputerScience is Parallel Computing

® The keyto parallel computing is exploit concurrency

e Concurrency was first exploited in Computing to better
utilize or share resources within a computer

® Same, if parallel computing brooks paradigms, a
methodological design is necessary to build
algorithms and code programs



Recommended

Lectures

® Designing and Building Parallel
Programs, by lan Foster in http://
www.mcs.anl.gov/-itf/dbpp/

® Patterns for Parallel Programming, by
Timothy G. Mattson, Beverly A. Sanders
and Berna L. Massingill. Software
Patterns Series, Addison Wesley Ed., USA.

2009.



