Parallel Programming

Environments and
Parallel Programming

Computation

Carlos Jaime Barrios Hernandez, PhD.
SC-CAMP

"urrialba,

“"The exact region a parallel application

occupies depends on the problem®”.

Supercomputers

TF

Computational Power

Gk

MB/s
l@Home, RSA Key Breaking

Aggregate Bandwidth GB/s

From http://daugerresearch.com

Plan

® Architectural Considerations to Parallel Programming (PP)

® Parallelism

® PP Models

® PP Quantitative Considerations

Architectural
Considerations to PP

® Remember "concurrency”: it exploits betterthe resources
(shared) within a computer.

® Exploit SIMD and MIMD Architectures

Instructions Input Data |nstructions Input Data Instructions Input Data
Instructions Input Data Input Data InputData Input Data

L -

: .

. .

. -

. . : .

- = P P P

. -

: E

Output Output Output Output
Data Data Data Data

SIMD MIMD

Architectural Considerations to PP

Shared Memory

CPU CPU CPU

SMP

CPU CPU CPU CPU CPU CPU

ndd ndd Nndd Nndd Nndd ndd

NUMA

e Distributed (Shared) Systems

Interconnect Network

CPU CPU CPU
-

CPU

MPP / Clusters

Parallelism

Task Parallelism Data Parallelism

m Elem4 Elem?7
TaskE TaskH m Elem5 Elem8

Task F Task | Elem6 Elem?9

TaskD TaskG

Parallel Programming
Models

® PP Environments
® BasicTools
® Language Features

® APIs (Application Programming Interfaces)

e Parallel Programs are extremely dependents of
Parallel Systems (Architectures)

e Often, Parallel Programs are not portable between
parallel computers

PP Models

® Shared Memory e Distributed Memory (Shared)
e OpenMP o MPI

* Hybrid Combination
— OpenMP + MPI
— CUDA, OpenCL, JAVA

Common Problems:

* Thrashing: Simultaneous Processors are simultaneous Attempting to write into the same cache line,
which can cause the cache link to ping pong between two different caches.

*False Sharing: Data Structures are attended in the same cache blocks

*Cache coherence (Overloading)

*Data Placement (Overlapping)

Latency Growing (in accordance with the distance among processors)

Some Definitions
(Reminder)

Task: Sequence of Instructions that operates together
as a group.

Unit Execution (UE): Unit where atask is mapped
(Process orThread)

® Process: Collection of Resources that enables the
execution of program instructions

Processing Elements (PEs): Hardware element that
executes a system of instructions

Some Concepts (To Explore)

® Load Balancing: (Interms of distribution among PEs)

® Static or Dynamic

® Synchronization: (Interms of Task and Process)

® Synchronous or Asynchronous

® Race Condition:

e® Outcome changes as the relative UE scheduling

e Deadlock:

e Each task of the cycle of tasks is blocked waiting for
another proceed.

PP Quantitative Bases

® Total Running Time (Sequential-Serial View):
T(2)=T +T +T

setup compute finalization

* Total Running Time (Parallel Idealized View):
T(P)=T + T(1)

compute v Tﬁnalization

P

setup

PP Quantitative
Considerations

® Relative Speedup (S): How much faster aproblemruns
in a way that normalizes away torunning time.

e Efficiency: Speedup Normalized by the number of PEs.
® Perfect Linear Speedup: S(P) = PEs.

® SerialTerms:Terms that cannot be run concurrently.

® Serial Fraction (y): Running times of the serialterms.

® Parallelizable fraction of a program is (1 —y)

Amdahl’s and
Gustafson’s Laws

e Amdahl's law:

® Speedup application due to parallel
computingis limited by the sequential
part of the application.

® Motivates task-level parallelization

® Gustafson’s law:

e Any sufficiently large problem can be
effectively parallelized.

John L. Gustafson: Reevaluating Amdahl’s law. In Communication of ACM,
Volume 31(5) 532-533, 1988

Parallel Programming and
Computation Thinking

e PP Goals (Reminder)
® Solve a problem in lesstime.
e Solve bigger problems in a determinedtime.
e Achieve better solutionsfor problems in a determinedtime.

e Good Candidatesfor Parallel Computing (Reminder):
e Large Problem Sizes (Large Scale Problems)
e High Complexity
e High Modeling

Programmers “build code ” and "organize data”to solve subproblems
concurrently.

Computational Thinking thought process of formulating domain problems in
terms of computation steeps and algorithms.

Methodical Design of Parallel
Algorithms

® Partitioning: Decomposition into

small tasks. PROBLEM

® Communication: Coordination of
task executions.

® Agglomeration. Task and e CW
communication structures

defined inthe first two stages of a
design are evaluated with respect agglomerate
to performancerequirements and
implementation costs.

® Mapping. Eachtaskis assigned to
a processor in amanner that
attempts to satisfy the competing

goals of maximizing processor %
utilization and minimizing /
communication costs. d

map

From http://www.mcs.anl.gov/~itf/dbpp/

Problem
Decomposition

® Decomposing calculation work into units of parallel
executions

® Finding parallelism in large computational problems is
often conceptually simple but can turn out to be
difficult in practice.

e Keyistoidentifythe workto be performed by each
unit of parallel executions

® Inherent parallelism of the problem is well utilized

Problem
Decomposition

® Decomposition is necessary to mapped
® Decomposition defines granularity

® Decomposition produces:
® Latency Costs
® More Complexity (In general terms)
® Load balancing needs

® Scheduling needs (To allocate, communicate,
transferring)

e Data Management needs

Algorithm Selection

® Algorithm Properties

e Definiteness:
® [Fachstepisprecisely stated.

e Effective Computability
® Fach stepcan be carried out by a computer.

® Finiteness
® Algorithm must be guaranteed toterminate.

® Algorithm Features

® Number of steeps
e Degree of parallel execution
e Bandwidth (Among Process)

Algorithm Selection

e ComputerArchitecture

e Memory Organization, Caching and locality, Memory
Bandwidth, Instructions mode (single-instruction or
multiple thread or single programs), data classes (single
data or multiple data executions), floating point
precision, accuracy (tradeoffs between algorithms).

® Programming Models and Compilers

e Parallel Execution Models, Types of available memories,
array data layouts, loop transformations (Data
structures and loop strructures)

Algorithm Selection

® Algorithm Techniques
e Tiling, cutoff, binning (scalability, efficiency)

® Domain Knowledge

® Numerical Methods, Models, accuracy requirements,
mathematical properties, phenomena/problem
knowledge (Application of Algorithms)

Design Spaces of Parallel
Programming’

e Finding Concurrency (Structuring Problem
to expose exploitable concurrency)

e Algorithm Structure (Structure Algorithm
to take advantage of Concurrency)

e Supporting Structures (Interfaces
between Algorithms and Environments)

e Implementation Mechanisms (Define
IM Programming Environments)

ePatterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

Finding Concurrency

5. -) g y Y v
N ANg ConcusTency

dependadency
Jecomposition

' P

lasss I a. A
. 3 VUG LUGLIOYE
.k-_‘w.l'tq}/u‘wfa-|'.‘._’4}{" e

/ata L’ecomposilion

a Py 3 I 1
Al Jaring

1
1
LE
'y a1 Ve . 2
f,v.('f,'n)-{'/fu(¢ JLTUCLUTT

1

1

LS

SUDPINOTIATWG OITUCLUTES
oA ‘ 4 -~ - - :

""I‘,‘Uy"-‘l".'-f laltion . Jechariisims

Image from: Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

Algorithm Structure

Finding Concurrency

#

Algorithm Structure

Task Parallelism

Divide and Conguer

S p——

Geometric Decompogition

Recursive Data

- —— " — - — - — - — -

b
Organize By Flow Of Data |
Pipeline |

i

Event-Bagsed Coordination | |

Supporting Structures

t

Implementation Mechanisms

Image from: Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

Supporting Structures

Finding Concusrrency

i

Algorithm Siruciure

i

Supporting Siruciures

Program Structures | Data Structures

SPAMD Shared Data

AMaster/Worker Shared Queue

Disiribuited Arvay

Fork /Join

r-.-.-.-....o...-.--.-...-.

[
Loop Parallelism |
i

B

r
[

i

Implementation Mechanisms

Image from: Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

Implementation
Mechanisms

Finding Concurrency

¢

Algorithm Siructure

¢

Supporiing Siructures

¢

Imptcmcntation Mechanisms

---——--—_-———-——---——I -....---_-------_----_---_-' - - - - - - —— - —

Image from: Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

Final Notes

e Often, ComputerScience is Parallel Computing

® The keyto parallel computing is exploit concurrency

e Concurrency was first exploited in Computing to better
utilize or share resources within a computer

® Same, if parallel computing brooks paradigms, a
methodological design is necessary to build
algorithms and code programs

Recommended

Lectures

® Designing and Building Parallel
Programs, by lan Foster in http://
www.mcs.anl.gov/-itf/dbpp/

® Patterns for Parallel Programming, by
Timothy G. Mattson, Beverly A. Sanders
and Berna L. Massingill. Software
Patterns Series, Addison Wesley Ed., USA.

2009.

