
Anti-aliasing (SC-Camp 2014)

In computer graphics images can be seen as a two-dimensional matrix
representing the color intensity of each pixels. Often, the quality of the
rendered image may be improved using algorithms to cope with low
resolution screens. One algorithm that improve graphics quality is called anti-
aliasing. Anti-aliasing makes the boundaries of two regions smoother by
approximating their colors. An example to illustrate how anti-aliasing
improves image quality is presented below.

 The left image show a sphinx that uses only black and white pixels.
The image on the right is the output of the anti-aliasing algorithm. The anti-
aliasing makes smoother color transitions adjusting each pixel based on the
color of neighbor pixels. As we can notice with naked eye, the image quality
is greatly improved after applying the anti-aliasing algorithm.

The Problem

 Your mission is to make a parallel version of a simple anti-aliasing
algorithm, very similar to the one described earlier. In this simple version
each pixel has from 0 up to 255 tones of gray (8 bits per pixel). The problem
is to compute a new image where each pixel is the mean of the pixel and its
neighbors' pixels as follows:

A non-optimized sequential algorithm to solve this problem is:

begin
 for each pixel located at row i and column j
 s := sum of valid pixel neighbors (including the pixel i j)
 n := number of valid neighbors (including the pixel i j)
 newImage[i][j] := s /n
 end for
end

Image before anti-aliasing

200 0 125

0 0 0

10 0 125

 To illustrate the algorithm, the example below shows a very small
image, 3x3 pixels. The top table shows the input image (before anti-aliasing).
The bottom image is the result image after applying the anti-aliasing
algorithm.

Image after anti-aliasing

50 54 31

35 51 41

2 22 31

Input

A file that contais:

• two integers to indicate the size in columns (width) and rows
(height) of the image, respectively;

• a series of integer representing the gray tone of each pixel.

Output

The value for each pixel.

Sample Input

3 3
200 0 125
0 0 0
10 0 125

Sample output

50 54 31
35 51 41
2 22 31

