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Disclaimer: 
This material is ONLY for academic purposes developed by 
NVIDIA in the context of NVIDIA®  CUDA Teaching Program 
and NVIDIA® CUDA Reseearch Center and the NVIDIA  
Scientific Program.  
 
Instructors are not official speakers of NVIDIA® Incorporated. 
 
Some of these slides are proposed by Pedro Velho (UFRGS), 
Michael Lasen (NVIDIA® ) and Monica Hernandez (SC3-UIS).  



�  You need experience with C  

�  You don’t need GPU experience 

�  You don’t need parallel programming experience (It’s not really 
true, if you have is better!!!) 

�  You don’t need graphics experience 
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http://ixbtlabs.com/articles3/video/cuda-1-p1.html 





SIMD: All processors units are executing 

the same instructions in any instant. 

SPMD: Parallel Processing Units execute the 

same program on multiple parts of data 
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�  Computer system with 
many independent 
arithmetic units or entire 
microprocessors, that 
run in parallel 

�  MPPA is a MIMD 
(Multiple Instruction 
streams, Multiple Data) 
architecture, with 
distributed memory 
accessed locally, not 
shared globally 



�  Multicore: Execution 
speed of sequential 
programs while 
moving into multiple 
cores. 

�  Many-core: 
Execution 
throughput of 
parallel applications. 





From http://developer.nvidia.com/page/home.html  
  



From 
http://developer.nvidia.com/page/home.html  



From http://www.nvidia.com/object/cuda_home_new.html  
 



From www.amd.com  



From http://www.nvidia.com/object/cuda_home_new.html  



�  TESLA™ shader processors are fully 
programmable 
›  Large instructions memory  
›  Cache Instructions 
›  Logic Sequence Instructions 

�  TESLA™ to non-graphics programs: 
›  Hierarchical Parallel Threads 
›  Barrier Synchronization 
›  Atomic Operators (Manage Highly Parallel 

Computing Work) 



�  Global memory 
›  Analogous to RAM in a CPU server 
›  Accessible by both GPU and CPU 
›  Currently up to 6 GB 
›  Bandwidth currently up to 150 GB/s for 

Quadro and Tesla products 
›  ECC on/off option for Quadro and Tesla 

products 
 

�  Streaming Multiprocessors (SMs) 
›  Perform the actual computations 
›  Each SM has its own: 

�  Control units, registers, execution pipelines, 
caches 
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§  Terminology: 
§  Host  The CPU and its memory (host memory) 
§  Device The GPU and its memory (device memory) 

Host Device 



�  Global memory 
›  Analogous to RAM in a CPU server 
›  Accessible by both GPU and CPU 
›  Currently up to 6 GB 
›  Bandwidth currently up to 150 GB/s for 

Quadro and Tesla products 
›  ECC on/off option for Quadro and Tesla 

products 

�  Streaming Multiprocessors (SMs) 
›  Perform the actual computations 
›  Each SM has its own: 

�  Control units, registers, execution pipelines, 
caches 
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�  32 CUDA Cores per SM 
›  32 fp32 ops/clock 
›  16 fp64 ops/clock 
›  32 int32 ops/clock 

�  2 warp schedulers 
›  Up to 1536 threads 

concurrently 
�  4 special-function units 
�  64KB shared mem + L1 

cache 
�  32K 32-bit registers 
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�  Floating point & 
Integer unit 
›  IEEE 754-2008 floating-

point standard 
›  Fused multiply-add 

(FMA) instruction for 
both single and 
double precision 

�  Logic unit 
�  Move, compare unit 
�  Branch unit 
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GPU CPU 

GPGPU Accelerate Computing 
Latency Processor + Throughput processor 



CPU 
"   Optimized for low-

latency access to cached 
data sets 

"   Control logic for out-of-
order and speculative 
execution 

 

GPU 
"   Optimized for data-parallel, 

throughput computation 
"   Architecture tolerant of memory 

latency 
"   More transistors dedicated to 

computation 
 



1.  Copy input data from CPU 
memory to GPU memory 

PCIe Bus 



1.  Copy input data from CPU 
memory to GPU memory 

2.  Load GPU program and 
execute, 
caching data on chip for 
performance 

PCIe Bus 



1.  Copy input data from CPU 
memory to GPU memory 

2.  Load GPU program and 
execute, 
caching data on chip for 
performance 

3.  Copy results from GPU memory 
to CPU memory 

PCIe Bus 
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" Step 1:  Substitute library calls with equivalent CUDA library 
calls 
  saxpy ( … )            cublasSaxpy ( … ) 
  

" Step 2: Manage data locality 
  - with CUDA:  cudaMalloc(), cudaMemcpy(), etc. 
         - with CUBLAS:  cublasAlloc(), 
cublasSetVector(), etc. 

 
 

" Step 3: Rebuild and link the CUDA-accelerated library 
 nvcc myobj.o –l cublas  



NVIDIA cuBLAS NVIDIA 
cuRAND 

NVIDIA 
cuSPARSE 

NVIDIA NPP 
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on GPU and 
Multicore 

NVIDIA cuFFT 

C++ STL 
Features for 
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Ê  CUDA Tools and 
Ecosystem 
described in detail 
on NVIDIA 
Developer Zone: 

 
developer.nvidia.co

m/cuda-tools-
ecosystem  



Microscopy Using EDF  N-Bodies Based in 
Montecarlo Iinfluenza MetaGenomics 

3 in House Examples 

5x in 5 Hours 12x in 1 Hour 125x in 2 Hours 



� CUDA 6.0 Performance Evaluation 
›  Memory Allocation 

� NVIDIA TESLA K40 Performance 
Evaluation 
›  Application Assembly and Portability 

� NVIDIA TESLAK20x + OMMPs 
›  Application Assembly and Dynamic Job 

Scheduling 



�  GROMACS +FlowVR 
›  Visualisation Assembly addressed to Multi-GPU Execution 

(In Consortium with INRIA Rhône Alpes, France) 
�  Seismic (Inverse and Elastic) Methods for Oil and Gas 

Prospective 
›  GPU and Multi-GPU Codes (In Consortium with ICP-

Ecopetrol and Barcelona Supercomputing 
Center(BSC_CNS) ) 

�  VisioPlatform for Astronomy and Astrophysics  
›  Based in Stallion (In Consortium with Texas Advanced 

Computing Center, USA) 



� Gas Pipelines Simulation 
� Water Simulations 
�  Falls of Cosmic Ray 
�  Seismic Solvers to Oil and Gas Needs (in 

Consortium with BSC) 



PyCUDA 

Numerical 
Analytics 

C# .NET GPU.NET 

Python 



MATLAB 
http://www.mathworks.com/discovery/ 
matlab-gpu.html 

These	
  languages	
  are	
  supported	
  on	
  all	
  CUDA-­‐capable	
  GPUs.	
  
You	
  might	
  already	
  have	
  a	
  CUDA-­‐capable	
  GPU	
  in	
  your	
  laptop	
  or	
  desktop	
  PC!	
  

CUDA C/C++ 
http://developer.nvidia.com/cuda-toolkit 

Thrust C++ Template Library 
http://developer.nvidia.com/thrust 

CUDA Fortran 
http://developer.nvidia.com/cuda-toolkit 

GPU.NET 
http://tidepowerd.com 

PyCUDA (Python) 
http://mathema.tician.de/software/pycuda 

Mathematica 
http://www.wolfram.com/mathematica/new 
-in-8/cuda-and-opencl-support/ 



 

void saxpy(int n, float a,  

   float *x, float *y) 

{ 
  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

int N = 1<<20; 

 
 

 

// Perform SAXPY on 1M elements 

saxpy(N, 2.0, x, y); 

__global__  

void saxpy(int n, float a,  

   float *x, float *y) 

{ 
  int i = blockIdx.x*blockDim.x + threadIdx.x; 

  if (i < n) y[i] = a*x[i] + y[i]; 

} 

 

int N = 1<<20; 

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice); 
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice); 

 

// Perform SAXPY on 1M elements 

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y); 

 

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost); 
 

 

Standard C Parallel C 

http://developer.nvidia.com/cuda-toolkit 



int N = 1<<20; 

std::vector<float> x(N), y(N); 

 

... 

 

 

 

 

 

// Perform SAXPY on 1M elements 

std::transform(x.begin(), 
x.end(), 

               y.begin(), 
y.end(), 

       2.0f * _1 + _2); 

 

int N = 1<<20; 

thrust::host_vector<float> x(N), 
y(N); 

 

... 

 

thrust::device_vector<float> d_x = x; 

thrust::device_vector<float> d_y = y; 

 

 

// Perform SAXPY on 1M elements 

thrust::transform(d_x.begin(), 
d_x.end(),  

                  d_y.begin(), 
d_y.begin(),  

                  2.0f * _1 + _2); 

 

Serial C++ Code 
with STL and Boost Parallel C++ Code 

http://thrust.github.com www.boost.org/libs/lambda 



module mymodule contains 
  attributes(global) subroutine saxpy(n, a, x, y)  
    real :: x(:), y(:), a 
    integer :: n, i 
    attributes(value) :: a, n 
    i = threadIdx%x+(blockIdx%x-1)*blockDim%x 
    if (i<=n) y(i) = a*x(i)+y(i) 
  end subroutine saxpy 
end module mymodule 
  
program main 
  use cudafor; use mymodule 
  real, device :: x_d(2**20), y_d(2**20) 
  x_d = 1.0, y_d = 2.0   
   
  ! Perform SAXPY on 1M elements 
  call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d) 
 

end program main 

http://developer.nvidia.com/cuda-fortran 

module mymodule contains 
  subroutine saxpy(n, a, x, y)  
    real :: x(:), y(:), a 
    integer :: n, i 
    do i=1,n 
      y(i) = a*x(i)+y(i) 
    enddo 
  end subroutine saxpy 
end module mymodule 
 
program main 
  use mymodule 
  real :: x(2**20), y(2**20) 
  x = 1.0, y = 2.0 
 
  ! Perform SAXPY on 1M elements 
  call saxpy(2**20, 2.0, x, y) 
 

end program main 

Standard Fortran Parallel Fortran 



Copperhead: Parallel Python 

http://copperhead.github.com 

from copperhead import * 
import numpy as np 
 
@cu 
def saxpy(a, x, y): 
  return [a * xi + yi  

          for xi, yi in zip(x, y)] 
 
x = np.arange(2**20, dtype=np.float32) 

y = np.arange(2**20, dtype=np.float32) 
 
with places.gpu0: 
  gpu_result = saxpy(2.0, x, y) 
 
with places.openmp: 
  cpu_result = saxpy(2.0, x, y) 

 
import numpy as np 
 
 
def saxpy(a, x, y): 
  return [a * xi + yi  
          for xi, yi in zip(x, y)] 
 
x = np.arange(2**20, 
dtype=np.float32) 
y = np.arange(2**20, 
dtype=np.float32) 
 
 
cpu_result = saxpy(2.0, x, y) 

http://numpy.scipy.org 

Standard Python 



�  Serial code executes in a Host (CPU) thread 
�  Parallel code executes in many Device (GPU) threads 

across multiple processing elements 

CUDA Application 

Serial code 
 

Serial code 
 

Parallel 
code 

 

Parallel 
code 

 

Device = GPU 

… 

Host = CPU 

Device = GPU 

... 

Host = CPU 



�  Parallel portion of application: execute 
as a kernel 
›  Entire GPU executes kernel, many threads 

� CUDA threads: 
›  Lightweight 
›  Fast switching 
›  1000s execute simultaneously 

CPU Host Executes functions 

GPU Device Executes kernels 



�  A kernel is a function 
executed on the GPU as 
an array of threads in 
parallel 

�  All threads execute the 
same code, can take 
different paths 

�  Each thread has an ID 
›  Select input/output data 
›  Control decisions 

float x = 
input[threadIdx.x]; 
float y = func(x); 
output[threadIdx.x] = 
y; 





�  Threads are grouped into blocks 



�  Threads are grouped into blocks 
�  Blocks are grouped into a grid 



�  Threads are grouped into blocks 
�  Blocks are grouped into a grid 
�  A kernel is executed as a grid of blocks of threads 



�  Threads are grouped into blocks 
�  Blocks are grouped into a grid 
�  A kernel is executed as a grid of blocks of threads 

GPU 



•  Each kernel is 
executed on one 
device 

• Multiple kernels can 
execute on a device 
at one time 

… … 
… 

CUDA-enabled GPU 

CUDA 
thread 

•  Each thread is 
executed by a core 

CUDA core 

CUDA thread 
block 

 

•  Each block is 
executed by one SM 
and does not migrate 

•  Several concurrent 
blocks can reside on 
one SM depending on 
the blocks’ memory 
requirements and the 
SM’s memory 
resources 

… 

CUDA 
Streaming 

Multiprocessor 

CUDA kernel grid 

... 



�  Threads may need to cooperate: 
›  Cooperatively load/store blocks of memory 

that they all use 
›  Share results with each other or cooperate to 

produce a single result 
›  Synchronize with each other 



�  Blocks can execute in any order, concurrently or sequentially 
�  This independence between blocks gives scalability: 

›  A kernel scales across any number of SMs 

Device with 2 SMs 

SM 0 SM 1 

 Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel 
Grid 

Launch Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Device with 4 SMs 

SM 0 SM 1 

 
SM 2 SM 3 

 Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 



�  Thread: 
›  Registers 
›  Local memory 

�  Block of threads: 
›  Shared memory 

�  All blocks: 
›  Global memory 



CPU Fermi GPU CPU Kepler GPU 



Higher Performance 
Lower Accuracy 

Coarse grid 

Lower Performance 
Higher Accuracy 

Fine grid Dynamic grid 

Target performance where 
accuracy is required 

Supported on GK110 GPUs 



The ability to launch new kernels from the GPU 
›  Dynamically - based on run-time data 
›  Simultaneously - from multiple threads at once 
›  Independently - each thread can launch a different grid 

CPU GPU CPU GPU 

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself 



GPU 

__global__ void B(float *data)  
{ 
    do_stuff(data); 
 
    X <<< ... >>> (data); 
    Y <<< ... >>> (data); 
    Z <<< ... >>> (data); 
    cudaDeviceSynchronize(); 
 
    do_more_stuff(data); 
} 

A 

B 

C 

X 

Y 

Z 

CPU 
int main() { 
    float *data;     
    setup(data); 
 
    A <<< ... >>> (data); 
    B <<< ... >>> (data); 
    C <<< ... >>> (data); 
 
    cudaDeviceSynchronize(); 
    return 0; 
} 



LU decomposition (Fermi) LU decomposition (Kepler) 

dgetrf(N, N) { 
  for j=1 to N 
    for i=1 to 64 
      idamax<<<>>> 
      memcpy 
      dswap<<<>>> 
      memcpy 
      dscal<<<>>> 
      dger<<<>>> 
    next i 
 
    memcpy 
    dlaswap<<<>>> 
    dtrsm<<<>>> 
    dgemm<<<>>> 
  next j 
} 

idamax(); 

dswap(); 

dscal(); 

dger(); 

dlaswap(); 

dtrsm(); 

dgemm(); 

dgetrf(N, N) { 
  dgetrf<<<>>> 
 
 
 
 
 
 
 
 
 
 
 
 
 
  synchronize(); 
} 

dgetrf(N, N) { 
  for j=1 to N 
    for i=1 to 64 
      idamax<<<>>> 
      dswap<<<>>> 
      dscal<<<>>> 
      dger<<<>>> 
    next i 
    dlaswap<<<>>> 
    dtrsm<<<>>> 
    dgemm<<<>>> 
  next j 
} 

GPU Code CPU Code GPU Code CPU Code 



GPU-
Side 

Kernel 
Launch 

Occupancy 

Simplify CPU/GPU Divide 

GPU-side Libraries 

Batching to Help Fill GPU 

Dynamic Load Balancing 

Data-Dependent Execution 

Recursive Parallel 
Algorithms •  Exploring OMMPs  (with BSC) 

•  OpenACC (With Cray, NVIDIA) 
•  FlowVR (With INRIA Rhône Alpes) 



� NVIDIA DEVELOPMENT SITE 
�  http://developer.nvidia.com/page/home.html  

� NVIDIA CUDA ZONE 
�  http://www.nvidia.com/object/

cuda_home_new.html  



�  Using nvcc™ compilator   
›  Visit this site and run the examples:   

�  http://developer.nvidia.com/object/
cuda_3_1_downloads.html 

�   Typical compiling 
 nvcc mycudacode.cu  

�   Specific compilation 
 nvcc –(args) mycudacude.cu – (extensions) 



� CUDA is good  
›  Parallel Massive Programs 
›  Low Bandwidth and Fine granularity 

Programs 
›  Scale Programs 

�  Efficient Load Balancing 
›  Multi-GPU Processing 
›  Exploit Massive Concurrent Features 



http://sc3.uis.edu.co  


