
Carlos Jaime Barrios Hernandez, PhD.
@carlosjaimebh
Supercomputación y Cálculo
Cientifico
Universidad Industrial de Santander
http://www.sc3.uis.edu.co @sc3uis

Disclaimer:
This material is ONLY for academic purposes developed by
NVIDIA in the context of NVIDIA® CUDA Teaching Program
and NVIDIA® CUDA Reseearch Center and the NVIDIA
Scientific Program.

Instructors are not official speakers of NVIDIA® Incorporated.

Some of these slides are proposed by Pedro Velho (UFRGS),
Michael Lasen (NVIDIA®) and Monica Hernandez (SC3-UIS).

�  You need experience with C

�  You don’t need GPU experience

�  You don’t need parallel programming experience (It’s not really
true, if you have is better!!!)

�  You don’t need graphics experience

Dual
Cores

(Symmetric
Multithreading)

MultiCore
Arrays

Scalar +
Many
Cores
(Highly

threaded
workloads)

Manycore
arrays

Large Scale Cores
(High Single Thread

Performance)

http://ixbtlabs.com/articles3/video/cuda-1-p1.html

SIMD: All processors units are executing

the same instructions in any instant.

SPMD: Parallel Processing Units execute the

same program on multiple parts of data

CU

P P P P

Input Data Input Data Input Data Input Data

Output
Data

Output
Data

Output
Data

Output
Data

SIMD

Instructions

Data

Program Program

Program

Program

Processor

�  Computer system with
many independent
arithmetic units or entire
microprocessors, that
run in parallel

�  MPPA is a MIMD
(Multiple Instruction
streams, Multiple Data)
architecture, with
distributed memory
accessed locally, not
shared globally

�  Multicore: Execution
speed of sequential
programs while
moving into multiple
cores.

�  Many-core:
Execution
throughput of
parallel applications.

From http://developer.nvidia.com/page/home.html

From
http://developer.nvidia.com/page/home.html

From http://www.nvidia.com/object/cuda_home_new.html

From www.amd.com

From http://www.nvidia.com/object/cuda_home_new.html

�  TESLA™ shader processors are fully
programmable
›  Large instructions memory
›  Cache Instructions
›  Logic Sequence Instructions

�  TESLA™ to non-graphics programs:
›  Hierarchical Parallel Threads
›  Barrier Synchronization
›  Atomic Operators (Manage Highly Parallel

Computing Work)

�  Global memory
›  Analogous to RAM in a CPU server
›  Accessible by both GPU and CPU
›  Currently up to 6 GB
›  Bandwidth currently up to 150 GB/s for

Quadro and Tesla products
›  ECC on/off option for Quadro and Tesla

products

�  Streaming Multiprocessors (SMs)
›  Perform the actual computations
›  Each SM has its own:

�  Control units, registers, execution pipelines,
caches

D
RA

M
 I/

F
G

ig
a

Th

re
a

d

H
O

ST
 I/

F
D

RA
M

 I/
F

D
RA

M
 I/F

D
RA

M
 I/F

D
RA

M
 I/F

D
RA

M
 I/F

L2

§  Terminology:
§  Host The CPU and its memory (host memory)
§  Device The GPU and its memory (device memory)

Host Device

�  Global memory
›  Analogous to RAM in a CPU server
›  Accessible by both GPU and CPU
›  Currently up to 6 GB
›  Bandwidth currently up to 150 GB/s for

Quadro and Tesla products
›  ECC on/off option for Quadro and Tesla

products

�  Streaming Multiprocessors (SMs)
›  Perform the actual computations
›  Each SM has its own:

�  Control units, registers, execution pipelines,
caches

D
R

A
M

 I/
F

G
ig

a
Th

re
ad

H

O
ST

 I/
F

D
R

A
M

 I/
F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2

�  32 CUDA Cores per SM
›  32 fp32 ops/clock
›  16 fp64 ops/clock
›  32 int32 ops/clock

�  2 warp schedulers
›  Up to 1536 threads

concurrently
�  4 special-function units
�  64KB shared mem + L1

cache
�  32K 32-bit registers

Register File

Schedul
er

Dispatch

Schedul
er

Dispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Instruction Cache

�  Floating point &
Integer unit
›  IEEE 754-2008 floating-

point standard
›  Fused multiply-add

(FMA) instruction for
both single and
double precision

�  Logic unit
�  Move, compare unit
�  Branch unit

Register File

Schedul
er

Dispatch

Schedul
er

Dispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Instruction Cache

CUDA
Core Dispatch Port

Operand
Collector

Result Queue

FP
Unit

INT
Unit

GPU CPU

GPGPU Accelerate Computing
Latency Processor + Throughput processor

CPU
"   Optimized for low-

latency access to cached
data sets

"   Control logic for out-of-
order and speculative
execution

GPU
"   Optimized for data-parallel,

throughput computation
"   Architecture tolerant of memory

latency
"   More transistors dedicated to

computation

1.  Copy input data from CPU
memory to GPU memory

PCIe Bus

1.  Copy input data from CPU
memory to GPU memory

2.  Load GPU program and
execute,
caching data on chip for
performance

PCIe Bus

1.  Copy input data from CPU
memory to GPU memory

2.  Load GPU program and
execute,
caching data on chip for
performance

3.  Copy results from GPU memory
to CPU memory

PCIe Bus

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Cor
e

Instruction Cache

CUDA Core
Dispatch Port

Result Queue

ALU

Operand Collector
Dispatch Port

SM

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Register File (65,536 x 32-bit)

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Fermi (GUANE-1) Kepler (GUANE-2)

146X
Medical
Imaging
U of Utah

36X
Molecular
Dynamics
U of Illinois,

Urbana

18X
Video

Transcoding
Elemental Tech

50X
Matlab

Computing
AccelerEyes

100X
Astrophysics

RIKEN

149X

Financial
Simulation

Oxford

47X

Linear Algebra
Universidad

Jaime

20X

3D
Ultrasound
Techniscan

130X

Quantum
Chemistry
U of Illinois,

Urbana

30X

Gene
Sequencing

U of Maryland

GPUs Accelerate Science

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Maximum
Performance

OpenACC
Directives

Easily Accelerate
Applications

" Step 1: Substitute library calls with equivalent CUDA library
calls
 saxpy (…) cublasSaxpy (…)

" Step 2: Manage data locality
 - with CUDA: cudaMalloc(), cudaMemcpy(), etc.
 - with CUBLAS: cublasAlloc(),
cublasSetVector(), etc.

" Step 3: Rebuild and link the CUDA-accelerated library
 nvcc myobj.o –l cublas

NVIDIA cuBLAS NVIDIA
cuRAND

NVIDIA
cuSPARSE

NVIDIA NPP

Vector Signal
Image

Processing

GPU
Accelerated

Linear Algebra

Matrix Algebra
on GPU and
Multicore

NVIDIA cuFFT

C++ STL
Features for

CUDA

Sparse Linear
Algebra IMSL Library

Building-block
Algorithms for

CUDA

ArrayFire Matrix
Computations

Ê  CUDA Tools and
Ecosystem
described in detail
on NVIDIA
Developer Zone:

developer.nvidia.co

m/cuda-tools-
ecosystem

Microscopy Using EDF N-Bodies Based in
Montecarlo Iinfluenza MetaGenomics

3 in House Examples

5x in 5 Hours 12x in 1 Hour 125x in 2 Hours

� CUDA 6.0 Performance Evaluation
›  Memory Allocation

� NVIDIA TESLA K40 Performance
Evaluation
›  Application Assembly and Portability

� NVIDIA TESLAK20x + OMMPs
›  Application Assembly and Dynamic Job

Scheduling

�  GROMACS +FlowVR
›  Visualisation Assembly addressed to Multi-GPU Execution

(In Consortium with INRIA Rhône Alpes, France)
�  Seismic (Inverse and Elastic) Methods for Oil and Gas

Prospective
›  GPU and Multi-GPU Codes (In Consortium with ICP-

Ecopetrol and Barcelona Supercomputing
Center(BSC_CNS))

�  VisioPlatform for Astronomy and Astrophysics
›  Based in Stallion (In Consortium with Texas Advanced

Computing Center, USA)

� Gas Pipelines Simulation
� Water Simulations
�  Falls of Cosmic Ray
�  Seismic Solvers to Oil and Gas Needs (in

Consortium with BSC)

PyCUDA

Numerical
Analytics

C# .NET GPU.NET

Python

MATLAB
http://www.mathworks.com/discovery/
matlab-gpu.html

These	
 languages	
 are	
 supported	
 on	
 all	
 CUDA-­‐capable	
 GPUs.	

You	
 might	
 already	
 have	
 a	
 CUDA-­‐capable	
 GPU	
 in	
 your	
 laptop	
 or	
 desktop	
 PC!	

CUDA C/C++
http://developer.nvidia.com/cuda-toolkit

Thrust C++ Template Library
http://developer.nvidia.com/thrust

CUDA Fortran
http://developer.nvidia.com/cuda-toolkit

GPU.NET
http://tidepowerd.com

PyCUDA (Python)
http://mathema.tician.de/software/pycuda

Mathematica
http://www.wolfram.com/mathematica/new
-in-8/cuda-and-opencl-support/

void saxpy(int n, float a,

 float *x, float *y)

{
 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

int N = 1<<20;

// Perform SAXPY on 1M elements

saxpy(N, 2.0, x, y);

__global__

void saxpy(int n, float a,

 float *x, float *y)

{
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

int N = 1<<20;

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

Standard C Parallel C

http://developer.nvidia.com/cuda-toolkit

int N = 1<<20;

std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements

std::transform(x.begin(),
x.end(),

 y.begin(),
y.end(),

 2.0f * _1 + _2);

int N = 1<<20;

thrust::host_vector<float> x(N),
y(N);

...

thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(),
d_x.end(),

 d_y.begin(),
d_y.begin(),

 2.0f * _1 + _2);

Serial C++ Code
with STL and Boost Parallel C++ Code

http://thrust.github.com www.boost.org/libs/lambda

module mymodule contains
 attributes(global) subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
 attributes(value) :: a, n
 i = threadIdx%x+(blockIdx%x-1)*blockDim%x
 if (i<=n) y(i) = a*x(i)+y(i)
 end subroutine saxpy
end module mymodule

program main
 use cudafor; use mymodule
 real, device :: x_d(2**20), y_d(2**20)
 x_d = 1.0, y_d = 2.0

 ! Perform SAXPY on 1M elements
 call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d)

end program main

http://developer.nvidia.com/cuda-fortran

module mymodule contains
 subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
 end subroutine saxpy
end module mymodule

program main
 use mymodule
 real :: x(2**20), y(2**20)
 x = 1.0, y = 2.0

 ! Perform SAXPY on 1M elements
 call saxpy(2**20, 2.0, x, y)

end program main

Standard Fortran Parallel Fortran

Copperhead: Parallel Python

http://copperhead.github.com

from copperhead import *
import numpy as np

@cu
def saxpy(a, x, y):
 return [a * xi + yi

 for xi, yi in zip(x, y)]

x = np.arange(2**20, dtype=np.float32)

y = np.arange(2**20, dtype=np.float32)

with places.gpu0:
 gpu_result = saxpy(2.0, x, y)

with places.openmp:
 cpu_result = saxpy(2.0, x, y)

import numpy as np

def saxpy(a, x, y):
 return [a * xi + yi
 for xi, yi in zip(x, y)]

x = np.arange(2**20,
dtype=np.float32)
y = np.arange(2**20,
dtype=np.float32)

cpu_result = saxpy(2.0, x, y)

http://numpy.scipy.org

Standard Python

�  Serial code executes in a Host (CPU) thread
�  Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA Application

Serial code

Serial code

Parallel
code

Parallel
code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

�  Parallel portion of application: execute
as a kernel
›  Entire GPU executes kernel, many threads

� CUDA threads:
›  Lightweight
›  Fast switching
›  1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

�  A kernel is a function
executed on the GPU as
an array of threads in
parallel

�  All threads execute the
same code, can take
different paths

�  Each thread has an ID
›  Select input/output data
›  Control decisions

float x =
input[threadIdx.x];
float y = func(x);
output[threadIdx.x] =
y;

�  Threads are grouped into blocks

�  Threads are grouped into blocks
�  Blocks are grouped into a grid

�  Threads are grouped into blocks
�  Blocks are grouped into a grid
�  A kernel is executed as a grid of blocks of threads

�  Threads are grouped into blocks
�  Blocks are grouped into a grid
�  A kernel is executed as a grid of blocks of threads

GPU

•  Each kernel is
executed on one
device

• Multiple kernels can
execute on a device
at one time

… …
…

CUDA-enabled GPU

CUDA
thread

•  Each thread is
executed by a core

CUDA core

CUDA thread
block

•  Each block is
executed by one SM
and does not migrate

•  Several concurrent
blocks can reside on
one SM depending on
the blocks’ memory
requirements and the
SM’s memory
resources

…

CUDA
Streaming

Multiprocessor

CUDA kernel grid

...

�  Threads may need to cooperate:
›  Cooperatively load/store blocks of memory

that they all use
›  Share results with each other or cooperate to

produce a single result
›  Synchronize with each other

�  Blocks can execute in any order, concurrently or sequentially
�  This independence between blocks gives scalability:

›  A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

 Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel
Grid

Launch Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Device with 4 SMs

SM 0 SM 1

SM 2 SM 3

 Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

�  Thread:
›  Registers
›  Local memory

�  Block of threads:
›  Shared memory

�  All blocks:
›  Global memory

CPU Fermi GPU CPU Kepler GPU

Higher Performance
Lower Accuracy

Coarse grid

Lower Performance
Higher Accuracy

Fine grid Dynamic grid

Target performance where
accuracy is required

Supported on GK110 GPUs

The ability to launch new kernels from the GPU
›  Dynamically - based on run-time data
›  Simultaneously - from multiple threads at once
›  Independently - each thread can launch a different grid

CPU GPU CPU GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

GPU

__global__ void B(float *data)
{
 do_stuff(data);

 X <<< ... >>> (data);
 Y <<< ... >>> (data);
 Z <<< ... >>> (data);
 cudaDeviceSynchronize();

 do_more_stuff(data);
}

A

B

C

X

Y

Z

CPU
int main() {
 float *data;
 setup(data);

 A <<< ... >>> (data);
 B <<< ... >>> (data);
 C <<< ... >>> (data);

 cudaDeviceSynchronize();
 return 0;
}

LU decomposition (Fermi) LU decomposition (Kepler)

dgetrf(N, N) {
 for j=1 to N
 for i=1 to 64
 idamax<<<>>>
 memcpy
 dswap<<<>>>
 memcpy
 dscal<<<>>>
 dger<<<>>>
 next i

 memcpy
 dlaswap<<<>>>
 dtrsm<<<>>>
 dgemm<<<>>>
 next j
}

idamax();

dswap();

dscal();

dger();

dlaswap();

dtrsm();

dgemm();

dgetrf(N, N) {
 dgetrf<<<>>>

 synchronize();
}

dgetrf(N, N) {
 for j=1 to N
 for i=1 to 64
 idamax<<<>>>
 dswap<<<>>>
 dscal<<<>>>
 dger<<<>>>
 next i
 dlaswap<<<>>>
 dtrsm<<<>>>
 dgemm<<<>>>
 next j
}

GPU Code CPU Code GPU Code CPU Code

GPU-
Side

Kernel
Launch

Occupancy

Simplify CPU/GPU Divide

GPU-side Libraries

Batching to Help Fill GPU

Dynamic Load Balancing

Data-Dependent Execution

Recursive Parallel
Algorithms •  Exploring OMMPs (with BSC)

•  OpenACC (With Cray, NVIDIA)
•  FlowVR (With INRIA Rhône Alpes)

� NVIDIA DEVELOPMENT SITE
�  http://developer.nvidia.com/page/home.html

� NVIDIA CUDA ZONE
�  http://www.nvidia.com/object/

cuda_home_new.html

�  Using nvcc™ compilator
›  Visit this site and run the examples:

�  http://developer.nvidia.com/object/
cuda_3_1_downloads.html

�  Typical compiling
 nvcc mycudacode.cu

�  Specific compilation
 nvcc –(args) mycudacude.cu – (extensions)

� CUDA is good
›  Parallel Massive Programs
›  Low Bandwidth and Fine granularity

Programs
›  Scale Programs

�  Efficient Load Balancing
›  Multi-GPU Processing
›  Exploit Massive Concurrent Features

http://sc3.uis.edu.co

