

OpenMP by Example

To copy all examples and exercises to your local scratch directory type:

/g/public/training/openmp/setup.sh

To build one of the examples, type ”make <EXAMPLE.X>” (where <EXAMPLE>
is the name of file you want to build (e.g. make test.x will compile a file test.f).

To build all examples at once, just type ”make”

Basic Architecture

processor

core

MEMORY

Older processor had only one
cpu core to execute instructions

Basic Architecture

processor

core

MEMORY

Older processor had only one
cpu core to execute instructions

processor

core

MEMORY

core

core core

Modern processors have 4 or more
independent cpu cores to execute instructions

Basic Architecture (EOS)

An EOS node consists of two processors (4 cpu cores each) and total memory of 24GB

processor

core

24GB MEMORY

core

corecore

processor

core core

core core

NODE

Sequential Program

core

MEMORY

core

core core

in
st

ru
ct

io
n

s

When you run sequential program

 Instructions executed on 1 core
 Other cores are idle

Sequential Program

core

MEMORY

core

core core

in
st

ru
ct

io
n

s

When you run sequential program

 Instructions executed on 1 core
 Other cores are idle

Waste of available resources. We
want all cores to be used to execute
program.

HOW?

What is OpenMP?

 Compiler Directives
 Runtime subroutines/functions
 Environment variables

Defacto standard API for writing shared memory parallel
applications in C, C++, and Fortran

OpenMP API consists of:

HelloWorld

PROGRAM HELLO
!$OMP PARALLEL
PRINT *,”Hello World”
!$ OMP END PARALLEL
STOP
END

Export OMP_NUM_THREADS=4
./hi.x

intel: ifort -openmp -o hi.x hello.f
pgi: pgfortran -mp -o hi.x hello.f
gnu: gfortran -fopenmp -o hi.x hello.f

#include <iostream>
#include ”omp.h”
int main() {
#pragma omp parallel
 {
 std::cout << ”Hello World\n”
 }
 return 0;
}

intel: icc -openmp -o hi.x hello.f
pgi: pgcpp -mp -o hi.x hello.f
gnu: g++ -fopenmp -o hi.x hello.f

HelloWorld

PROGRAM HELLO
!$OMP PARALLEL
PRINT *,”Hello World”
!$ OMP END PARALLEL
STOP
END

Export OMP_NUM_THREADS=4
./hi.x

intel: ifort -openmp -o hi.x hello.f
pgi: pgfortran -mp -o hi.x hello.f
gnu: gfortran -fopenmp -o hi.x hello.f

#include <iostream>
#include ”omp.h”
int main() {
#pragma omp parallel
 {
 std::cout << ”Hello World\n”
 }
 return 0;
}

intel: icc -openmp -o hi.x hello.f
pgi: pgcpp -mp -o hi.x hello.f
gnu: g++ -fopenmp -o hi.x hello.f

OMP ENVIRONMENTAL VARIABLE

OMP COMPILER DIRECTIVES

NOTE: example hello.f90

Fortran, C/C++
fortran directive format:

!$ OMP PARALLEL [clauses]
 :
!$OMP END PARALLEL

C/C++ directive format is:

#pragma omp parallel [clauses]
{
 :
}

All OpenMP directives follow this format.

Will discuss later!

New line required

At run time

Print *,”hello” Print *,”hello” Print *,”hello” Print *,”hello”

Program Hello

end

OMP region, every
thread executes all
the instructions in
the OMP block

Runtime creates 3 additional ”worker”
threads at start of openmp region

Thread #3Thread #1Thread #0 Thread #2

Fork/Join Model

OpenMP follows the fork/join model:

 OpenMP programs start with a single thread; the master thread (Thread #0)
 At start of parallel region master creates team of parallel ”worker” threads (FORK)
 Statements in parallel block are executed in parallel by every thread
 At end of parallel region, all threads synchronize, and join master thread (JOIN)

Implicit barrier. Will discuss
synchronization later

Fork/Join Model

OpenMP follows the fork/join model:

 OpenMP programs start with a single thread; the master thread
 At start of parallel region master creates team of parallel ”worker” threads (FORK)
 Statements in parallel block are executed in parallel by every thread
 At end of parallel region, all threads synchronize, and join master thread (JOIN)

Implicit barrier. Will discuss
synchronization later

F
O
R
K

F
O
R
K

J
O
I
N

Thread #3

Thread #0

Thread #2

Thread #1

OpenMP Threads versus Cores

 Thread is independent sequence of execution of program code
Block of code with one entry and one exit

 For our purposes a more abstract concept
 Unrelated to Cores/CPUs
 OpenMP threads are mapped onto physical cores
 Possible to map more than 1 thread on a core
 In practice best to have one-to-one mapping.

What are threads, cores, and how do they relate?

More About OpenMP Threads

Number of openMP threads can be set using:

 Environmental variable OMP_NUM_THREADS
 Runtime function omp_set_num_threads(n)

Other useful function to get information about threads:

 Runtime function omp_get_num_threads()
Returns number of threads in parallel region
Returns 1 if called outside parallel region

 Runtime function omp_get_thread_num()
Returns id of thread in team
Value between [0,n-1] // where n = #threads
Master thread always has id 0

HelloThreads Exercise

PROGRAM HELLOTHREADS
INTEGER THREADS , ID

PRINT *, ”NUM THREADS:”, THREADS
PRINT *, ”hello from thread:”,id,” out of”, threads

STOP
END

Extend the program below to make it parallel where every
thread prints out it's id and total number of threads

int main() {
 int threads = 100;
 int id = 100;

 std::cout << ”hello from thread: ”,id << ”out of ”;
 std::cout << threads << ”\n”;

 return 0;
}

FORTRAN C++

NOTE: exercise hello_treads

Shared Memory Model
The memory is (logically) shared by all the cpu's

Thread
0

Thread
1

Thread
2

Thread
3

Shared memory

var: THREADS
Var: ID

$OMP PARALLEL
THREADS = omp_get_num_threads()
ID = omp_get_thread_id()
 :
!$ OMP END PARALLEL

Relevant piece of code
from our example on
previous page

”All threads try to access the
same variable (possibly at the
same time). This can lead to a
race condition. Different runs
of same program might give
different results because of
race conditions”

Shared and Private Variables

 SHARED (list)
All variables in list will be considered shared.
Every openmp thread has access to all these variables

 PRIVATE (list)
Every openmp thread will have it's own ”private” copy of variables in list
No other openmp thread has access to this ”private” copy

By default most variables are considered shared in OpenMP. Exceptions
include index variables (Fortran, C/C++) and variables declared inside
parallel region (C/C++)

OpenMP provides a way to declare variables private or shared within an
OpenMP block.This is done using the following OpenMP clauses:

For example: !$OMP PARALLEL PRIVATE(a,b,c) (fortran) or
#pragma omp parallel private(a,b,c) (C/C++)

HelloThreads Exercise (2)

PROGRAM HELLOTHREADS
INTEGER THREADS , ID
!$OMP PARALLEL
threads = omp_get_num_threads()
id = omp_get_thread_num()
PRINT *, ”NUM THREADS:”, THREADS
PRINT *, ”hello from thread:”,id,” out of”, threads
!$OMP PARALLEL END
STOP
END

Adapt the program below such that all relevant variables
are correctly classified as OpenMP private/shared

int threads = 100;
int id = 100;
#pragma omp parallel
{
 threads = omp_get_num_threads()
 id = omp_get_thread_num()
 std::cout << ”hello from thread: ”,id << ”out of ”;
 std::cout << threads << ”\n”;
}
return 0;

FORTRAN C++

NOTE: exercise hello_threads_private

Revisit Shared Memory Model
The memory is (logically) shared by all the cpu's
There is also private memory for every openmp thread

Thread
0

Thread
1

Thread
2

Thread
3

Shared memory

var: THREADS
var: ID

THREADS

ID

THREADS

ID

THREADS

ID

THREADS

ID

shared variables ”threads”
and ”id” still exist, but every
thread also has a private copy
of variables”threads” and
”id”. There will not be any
race condition for these
private variables

TIP: Practical Issue

 OpenMP creates separate data stack for every worker thread to
 store copies of private variables (master thread uses regular stack)
 Size of these stacks is not defined by OpenMP standards

 Intel compiler: default stack is 4MB
 gcc/gfortran: default stack is 2MB

 Behavior of program undefined when stack space exceeded
 Although most compilers/RT will throw seg fault

 To increase stack size use environment var OMP_STACKSIZE, e.g.
 export OMP_STACKSIZE=512M
 export OMP_STACKSIZE=1GB

 To make sure master thread has large enough stack space use
 ulimit -s command (unix/linux).

NOTE: example stacksize

Work Sharing (manual approach)

So far only discussed parallel regions that all did same work. Not very useful.
What we want is to share work among all threads so we can solve our
problems faster.

 :
!$OMP PARALLEL PRIVATE(n,num,id,f,l)
id = omp_get_thread_num()
num = omp_get_num_threads()
f = id*(N/num)+1
l = (id+1)*(N/num)
DO n=f,l,1
 A(n) = A(n) + B
ENDDO
!$ OMP END PARALLEL
 :

Can be cumbersome and error prone!

Partition the iteration
space manually, every
thread computes
N/num iterations

Work Sharing

Suppose: N=100 and num=4 → N/num=25

Thread 0 Thread 1 Thread 2 Thread 3

f=0*25+1 = 1
l=1*25 = 25

f=1*25+1=26
l=2*25 = 50

f=2*25+1=51
l=3*25 = 75

f=3*25+1=76
l=4*25 = 100

Thread 0 computes elements from index 1 to 25, Thread 1 computes from index 26 to 50, etc.

f = id*(N/num)+1
l = (id+1)*(N/num)
DO n=f,l,1
 A(n) = A(n) + B
ENDDO

NOTE: example work_sharing_f, vary threads

The above implementation makes one big assumption. What is it?

Work Sharing (openmp approach)

!$OMP PARALLEL
!$OMP DO
DO I=1,100
 A(I) = A(I) + B
ENDDO
!$OMP END DO
!$ OMP END PARALLEL

OpenMP takes care of
partitioning the iteration
space for you. The only thing
needed is to add the
!$OMP DO and !$OMP END
DO directives

”even more compact by combining omp parallel/do directives”

NOTE: example work_sharing_omp, compare with work_sharing_f

#pragma omp parallel for
for (i=0;i<100;++i) {
 A(I) = A(I) + B
}

FORTRAN C++

FORTRAN C++

!$OMP PARALLEL DO
DO I=1,100
 A(I) = A(I) + B
ENDDO
!$ OMP END PARALLEL DO

#pragma omp parallel
{
#pragma omp for
for (i=0;i<100;++i) {
 A(I) = A(I) + B
}

Exercise

Create a program that computes a simple matrix vector
multiplication b=Ax, either in fortran or C/C++. Use OpenMP
directives to make it run in parallel.

Reductions
A common type of computation is something like:

 DO i=1,10 for (int i=0;i<10;++i) {
 a = a op expr a = a op expr
 ENDDO }

a = a op expr is called a reduction operation. Obviously, there is a loop
carried flow dependence (will discuss later) for variable 'a' which prohibits
parallelization.

For these kind of cases OpenMP provides the REDUCTION(op:list) clause.
This clause can be applied when the following restrictions :are met:

 a is a scalar variable in the list
 expr is a scalar expression that does not reference a
 Only certain kind of op allowed; e.g. +,*,-
 For fortran op can also be intrinsic; e.g. MAX,MIN,IOR
 Vars in list have to be shared

Exercise

Create a program that computes the sum of all the elements in
an array A (in fortran or C/C++) or a program that finds the
largest number in an array A (Fortran) . Use OpenMP
directives to make it run in parallel.

TIP: OpenMP Scoping Rules

So far we have all the directives nested within the same
Routine (!$OMP PARALLEL outer most). However, OpenMP
provides more flexible scoping rules. E.g. It is allowed to have
routine with only !$OMP DO In this case we call the !$OMP DO an
orphaned directive.

Note: There are some rules (e.g. When an !$OMP DO directive is encountered
program should be in parallel section)

How OMP schedules iterations?
Although the OpenMP standard does not specify how a loop should be partitioned
most compilers split the loop in N/p (N #iterations, p #threads) chunks by default. This
is called a static schedule (with chunk size N/p)

THREAD 1 THREAD 2 THREAD 3 THREAD 4

1000

1 250 500 750 1000

For example, suppose we have a loop with 1000 iterations and 4 omp threads.
The loop is partitioned as follows:

Static Schedule
To explicitly tell the compiler to use a static schedule (or a different
schedule as we will see later) OpenMP provides the SCHEDULE clause

$!OMP DO SCHEDULE (STATIC,n) // (n is chunk size)

1 2 3 4 1 2 3 4 1 2 3 4…..

1000

1 10 20 30 40 50 60 70 80 960 970 980 990 1000

For example, suppose we set the chunk size n=10

NOTE: example static_schedule, vary chunk size

Issues with Static schedule
With static scheduling the number of iterations is evenly distributed among all
openmp threads (i.e. Every thread will be assigned similar number of
iterations). This is not always the best way to partition. Why is This?

Issues with Static schedule
With static scheduling the number of iterations is evenly distributed among all
openmp threads (i.e. Every thread will be assigned similar number of
iterations). This is not always the best way to partition. Why is This?

0 7654321

Iterations

T
im

e
p

er
 i

te
ra

ti
o

n

thread1

thread2 thread3 thread4

This is called load
imbalance. In this case
threads 2,3, and 4 will be
waiting very long for
thread 1 to finish

How can this happen?

Dynamic Schedule

With a dynamic schedule new chunks are assigned to threads when they
come available. OpenMP provides two dynamic schedules:

 $!OMP DO SCHEDULE(DYNAMIC,n) // n is chunk size
 Loop iterations are divided into pieces of size chunk. When
 a thread finishes one chunk, it is dynamically assigned another.
 $!OMP DO SCHEDULE(GUIDED,n) // n is chunk size
 Similar to DYNAMIC but chunk size is relative to number of iterations
 left.

Keep in mind: although Dynamic scheduling might be the prefered choice to
prevent load inbalance in some situations, there is a significant overhead involved
compared to static scheduling.

NOTE: example dynamic_schedule, vary threads

OMP SINGLE

Another work sharing directive (although it doesn't really share work) OpenMP
provides is !$OMP SINGLE. When encountering a single directive only one
member of the team will execute the code in the block

 One thread (not neccesarily master) executes the block
 Other threads will wait
 Useful for thread-unsafe code
 Useful for I/O operations

We will use this directive in a later exercise

Data Dependencies

Not all loops can be parallelized. Before adding OpenMP
directives need to check for any dependencies:

We categorize three types of dependencies:

 Flow dependence: Read after Write (RAW)
 Anti dependence: Write after Read (WAR)
 Output dependence (Write after Write (WAW)

X = 21
PRINT *, X

PRINT *, X
X = 21

X = 21
X = 21

FLOW ANTI OUTPUT

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

Let's find the dependencies in the following loop?

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)
4: S4 → S4 output (temp)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

S2: B(1) = temp
S3: A(2) = B(2)
S4: temp = A(1)

S2: B(2) = temp
S3: A(3) = B(3)
S4: temp = A(2)

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)
4: S4 → S4 output (temp)

Sometimes it helps to ”unroll” part of the loop to
see loop carried dependencies more clear

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

S2: B(1) = temp
S3: A(2) = B(2)
S4: temp = A(1)

S2: B(2) = temp
S3: A(3) = B(3)
S4: temp = A(2)

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)
4: S4 → S4 output (temp)

Sometimes it helps to ”unroll” part of the loop to
see loop carried dependencies more clear

4

12 3

Case Study: Jacobi

Implement a parallel version of the Jacobi algorithm using
OpenMP. A sequential version is provided.

Data Dependencies (3)

Loop carried anti- and output dependencies are not true
dependencies (re-use of the same name) and in many cases
can be resolved relatively easily.

Flow dependencies are true dependencies (there is a
flow from definition to its use) and in many cases
cannot be removed easily. Might require rewriting the
algorithm (if possible)

 Resolving Anti/Output Deps

Use PRIVATE clause:
Already saw this in example hello_threads

Rename variables (if possible):
Example: in-place left shift
 !$OMP PARALLEL DO
DO i=1,n-1 DO i=1,n-1 DO i=1,n-1
 A(i)=A(i+1) → ANEW(i) = A(i+1) → ANEW(i) = A(i+1)
ENDDO ENDDO ENDDO
 !$OMP END PARALLEL DO
If has to be in-place can do it in two steps:

!$OMP PARALLEL
!$OMP DO
 T(i) = A(i+1)
!$OMP END DO
!$OMP DO
 A(i) = T(i)
!$OMP END DO
!$OMP END PARALLEL

More about shared/private vars

 FIRSTPRIVATE (list):
 Same as PRIVATE but every private copy of variable 'x' will be
 initialized with the original value (before the omp region started) of 'x'
 LASTPRIVATE (list):
 Same as PRIVATE but the private copies of the variables in list
 from the last work sharing will be copied to shared version. To be used
 with !$OMP DO Directive.
 DEFAULT (SHARED | PRIVATE | FIRSTPRIVATE | LASTPRIVATE):
 Specifies the default scope for all variables in omp region.

Besides the clauses described before OpenMP provides
some additional datascope clauses that are very useful:

NOTE: example data scope

Case Study: Removing Flow Deps

Y[1] = X[1]
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO

Y = prefix(X) → Y(1) = X(1); Y(i) = Y(i-1) + X(i)

1 1 1 1 1 2 3 4

X Y

SEQUENTIAL

Case Study: Removing Flow Deps

Y[1] = X[1]
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO

Y = prefix(X) → Y(1) = X(1); Y(i) = Y(i-1) + X(i)

1 1 1 1 1 2 3 4

X Y

SEQUENTIAL

Y[1] = X[1]
!$OMP PARALLEL DO
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO
!$OMP END PARALLEL DO

PARALLEL

Case Study: Removing Flow Deps

Y[1] = X[1]
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO

Y = prefix(X) → Y(1) = X(1); Y(i) = Y(i-1) + X(i)

1 1 1 1 1 2 3 4

X Y

SEQUENTIAL

Y[1] = X[1]
!$OMP PARALLEL DO
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO
!$OMP END PARALLEL DO

PARALLEL

WHY?

Case Study: Removing Flow Deps

REWRITE ALGORITHM

STEP 1: split X among threads; every thread computes its own (partial) prefix sum

STEP 2: create array T → T[1]=0, T[i] = X[(length/threads)*(i-1)], perform simple prefix sum on T
 (will collects last element from every thread (except last) and perform simple prefix sum)

4 4 4

STEP 3: every thread adds T[theadid] to all its element

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

 1 2 3 4

4 8 120 0

 5 6 7 8 9 10 11 12 13 14 15 16
+0 +4 +8 +12

STEP 4: Finished; we rewrote prefex sum by removing dependencies.

Prefix Sum Implementation

How to implement the algorithm on the previous slide?

 Three separate steps
 Steps 1 and 3 can be done in parallel
 Step 2 has to be done sequential
 Step 1 has to be performed before step 2
 Step 2 has to be performed before step 3

NOTE: exercise prefix

NOTE: For illustration purposes we can assume array length is multiple of #threads

Case Study: Removing Flow Deps

This Case study showed an example of an algorithm with real (flow)
dependencies

 Sometimes we can rewrite algorightm to run parallel
 Most of the time this is not trivial
 Speedup much less impressive (often)

OpenMP Sections

Suppose you have blocks of code that can be executed in parallel (i.e. No
dependencies). To execute them in parallel OpenMP provides the
!$OMP SECTIONS directive. The syntax will look something like:

!$OMP PARALLEL
!$OMP SECTIONS

!$OMP SECTION
 // WORK 1
!$OMP SECTION
 // WORK 2

!$OMP END SECTIONS
!$OMP END PARALLEL

This will execute ”WORK 1” and ”WORK 2” in parallel

!$OMP PARALLEL SECTIONS
!$OMP SECTION
 // WORK 1
!$OMP SECTION
 // WORK 2
!$OMP END PARALLEL SECTIONS

Combined version

Exercise

Create a program that computes the adjusted prefix sum below
for 4 different arrays and after that adds all of them up. Use
OpenMP directives to make it run in parallel.

A(1) = A(1)
A(2) = A(2) + A(1)
A(i) = A(i-2) + A(i-1)

NOWAIT Clause

Whenever a thread in a work sharing construct (e.g. !$OMP DO) finishes its work
faster than other threads it will wait until all threads participating have finished their
respective work. All threads will synchronize at end of work sharing construct

For situations where we don't need or want to synchronize at
the end OpenMP provides the NOWAIT clause

!$OMP DO
 :
!$OMP END DO NOWAIT

#pragma omp do nowait
{
 :
}

Fortran C/C++

NOTE: example nowait

Work Sharing Summary

 !$OMP DO
 !$OMP SECTIONS
 !$OMP SINGLE

Useful clauses that can be used with these constructs (incomplete list
and not all clauses can be used with every directive)

OMP work sharing constructions we discussed

 SHARED (list)
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE(list)
 SCHEDULE (STATIC | DYNAMIC | GUIDED, chunk)
 REDUCTION(op:list)
 NOWAIT

Synchronization

 !$OMP MASTER
 !$OMP CRITICAL
 !$OMP ATOMIC
 !$OMP BARRIER

OpenMP programs use shared variables to communicate. We need to
make sure these variables are not accessed at the same time by different
threads (will cause race conditions, WHY?). OpenMP provides a number of
directives for synchronization.

!$OMP MASTER

This Directive ensures that only the master threads
excecutes instructions in the block. There is no implicit barrier
so other threads will not wait for master to finish

!$OMP MASTER

This Directive ensures that only the master threads
excecutes instructions in the block. There is no implicit barrier
so other threads will not wait for master to finish

What is difference with !$OMP SINGLE DIRECTIVE?

!$OMP CRITICAL

This Directive makes sure that only one thread can execute
the code in the block. If another threads reaches the critical
section it will wait untill the current thread finishes this critical
section. Every thread will execute the critical block and they
will synchronize at end of critical section

 Introduces overhead
 Serializes critical block
 If time in critical block relatively large → speedup negligible

Exercise

In the REDUCTION exercise we created a program that
computes the sum of all the elements in an array A. Create
another program that does the same, without using the
REDUCE clause. Compare the two versions.

!$OMP ATOMIC

This Directive is very similar to the !$OMP CRITICAL
directive on the previous slide. Difference is that !$OMP
ATOMIC is only used for the update of a memory location.
Sometimes !$OMP ATOMIC is also refered to as a mini
critical section.

 Block consists of only one statement
 Atomic statment must follow specific syntax

!$OMP ATOMIC

This Directive is very similar to the !$OMP CRITICAL
directive on the previous slide. Difference is that !$OMP
ATOMIC is only used for the update of a memory location.
Sometimes !$OMP ATOMIC is also refered to as a mini
critical section.

 Block consists of only one statement
 Atomic statment must follow specific syntax

”Can replace ”critical” with ”atomic” in previous example”

!$OMP BARRIER

!$OMP BARRIER will enforce every thread to wait at the barrier
until all threads have reached the barrier. !$OMP BARRIER is
probably the most well known synchronization mechanism;
explicitly or implictly. The following omp directives we discussed
before include an implicit barrier:

 !$ OMP END PARALLEL
 !$ OMP END DO
 !$ OMP END SECTIONS
 !$ OMP END SINGLE
 !$ OMP END CRITICAL

Potential Speedup

Ideally, we would like to have perfect speedup (i.e. speedup of N when
using N processors). However, this is not really feasible in most cases
for the following reasons:

 Not all execution time is spent in parallel regions (e.g. loops)
 e.g. not all loops are parallel (data dependencies)

 There is an inherent overhead with using openmp threads

Let's look at an example that shows how speedup will be affected because of non
parallel parts of a program

NOTE: example amdahl

TIP: IF Clause

OpenMP provides another useful clause to decide at run
time if a parallel region should actually be run in parallel
(multiple threads) or just by the master thread

OpenMP provides another useful clause to decide at run
time if a parallel region should actually be run in parallel
(multiple threads) or just by the master thread:

IF (logical expr)

For example:

$!OMP PARALLEL IF(n > 100000) (fortran)
#pragma omp parallel if (n>100000) (C/C++)

This will only run the parallel region when n> 100000

Amdahl's Law
Every program consists of two parts:

 Sequential part
 Parallel part

Obviously, no matter how many processors, the sequential part will always be
executed by exactly one processor.Suppose, program spends p (0 < p < 1) part
of the time in parallel region. running time (relative to sequential) will be:

(1−p)+
p
N

1

1

(1−p)+
p
N

This means that maximum speedup will be:

e.g. Suppose 80% of program can be
run in parallel and we have unlimited
#cpus, maximum speedup will still be
only 5

OpenMP overhead/Scalability

Starting a parallel OpenMP region does not come free. There is considerable
overhead involved. Consider the following before placing openmp pragmas around a
loop:

 Remember Amdahl's law
 Parallelize most outer loop possible (in some cases even if less iterations)
 Make sure speedup in parallel region enough to overcome overhead

Is number if iterations in loop large enough?
Is amount of work per iteration enough?

 Overhead can be different on different machine/OS/compiler

 More threads competing for available bandwith
 Cache issues

OpenMP programs don't always scale well. I.e. When number of
openmp threads increases speedup will suffer

NOTE: example omp_overhead and scalabiltiy

Nested Parallelism

OpenMP allows nested parallelism (e.g. !$OMP DO within !$OMP DO)

 env var OMP_NESTED to enable/disable
 omp_get_nested(), omp_set_nested() runtime functions
 Compiler can still choose to serialize nested parallel
 region (i.e. use team with only one thread)
 Significant overhead. WHY?
 Can cause additional load imbalance. WHY?

NOTE: example nested

OpenMP Loop collapsing
When you have perfectly nested loops you can collapse inner loops using the
OpenMP clause collapse(n). Collapsing a loop:

 Loop needs to be perfectly nested
 Loop needs to have rectangular iteration space
 Makes iteration space larger
 Less synchronization needed than nested parallel loops

!$OMP PARALLEL DO PRIVATE (i,j) COLLAPSE(2)
DO i = 1,2
 DO j=1,2
 call foo(A,i,j)
 ENDDO
ENDDO
!$OMP END PARALLEL DO

Example:

NOTE: example collapse

TIP: Number of Threads Used

 DYNAMIC MODE
Number of threads used can vary per parallel region
Setting number of threads only sets max number of threads
(actual number might be less)

 STATIC MODE
Number of threads is fixed and determined by programmer

 Environmental Variable OMP_DYNAMIC to set mode
 Runtime functions omp_get_dynamic/omp_set_dynamic

OpenMP has two modes to determine how many threads
will actually be used in parallel region:

Math Libraries

Math libraries have very specialized and optimized version of many functions and
many of them have been parallelized using OpenMP. On EOS we have the Intel
Math Kernel Library (MKL)

For more information about MKL:

http://sc.tamu.edu/help/eos/mathlib.php

So, before implementing your own OpenMP Math function, check if
there already is a version in MKL

http://sc.tamu.edu/help/eos/mathlib.php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

