Good Practices in Parallel
and Scientific Software

Gabriel Pedraza Ferreira

gpedraza@uis.edu.co

Super Computaciéon y
Calculo Cientifico UIS

mailto:gpedraza@uis.edu.co

Parallel Software Development

Research

2004

Universities
Supercomputing Centers
Oil & Gas

Present

CAE
CFD
Finance
Rendering
Data Analytics
Life Sciences
Defense
Weather
Climate
Plasma Physics

Some Scientific Software

 Sometimes developed by only one person
* Code has no documentation

e Software has no clear structure

* There is only a copy of code source

* Tools: text editor and a compiler

Software Development
Complexity

things are getting worse
* Problem Domain s : *

* Life Science, Finance, Image Proces: PLEASE
* Software Architecture SEND
* Individual Application -> Multiuser ,
Reusable Component (3X)
e Technical Complexity Monn
* Programming Languages, Software c OFFEE
GYo

Software Libraries, Target Platforms

Software Quality

* Reliability
* Resiliency, Solidity
* Efficiency
* Performance, Scalability
* Security
* Vulnerability
* Maintainability

* Adaptability, Portability, Transferability (one team to
other)

Good Practices

* Architecture

* Design

* Coding

* Peer Review

* Testing

e Configuration Management

Good Practices
Coding

Good Practices: Coding

* Comment your code
* Warning DRY
* i.e. while (*n++=*i++);

* Naming conventions
e Variables al, a2, a3 ... meaning?

* Keep the code simple
* Another might (will) modify your code in future

* Portability
* Don’t use hard code (IPs, files, users, urls, ports, etc.)

Good Practices: Coding Tools

* IDE: Integrated Development Environment

= Jlava - BankingProject/src/org/eclipse/samples/banking/BankAccountTests java - Eclipse SDK =RECIL X
File Edit Source Refactor Mavigate Search Project Run Window Help
- @ H-0- Q- EEE @ By B-a- B~ filv ko o e = [@ava
[# Package Ex &2 Hierarchy | = O *BankAccountTestsjava &2 m BankAccount.java =0
g ¥ - J
— Q:D = package crg.eclipse.samples.banking; - M
4 tpd BankingProject - import java.math.BigDecimal;
4 {39 S . t - it.Test:
4 7 org.eclipsesamples.banking SEDOTL efd.Junit.-msti o -
BankAccount,java import static crg.junit.Rsserc.*;
i) BankAccountTestsjava
aJRE_System Library [jrel.6.0 01 public class BankRccountTests {
=i JUnit 4 @Test
public woid testDeposit() throws Excepticn {
Banklccount account = new Bankl ount () ;
account.deposit (new BigDecimal (1000)):
- @ Create method ‘deposit(BigDecimal)’ in type 'Ban |-
assertEgqua 3 3 - 5 .
@, Add cast to "account import java.math.BigDecimal;
w Rename in file (Ctrl+2 R direct access) public class BankAccount {
public void deposit{BigDecimal bigDecimal) {
// TODO Auto-generated method stub
N }
‘ n [H
2% Outline 52 =g ‘ m)
B R s et ¥) N
8 org.eclipse.samples.banking - -
[Problems 2 @ Javadac | [&, Declaration k3]

4 = import declaraticns
“— java.math.BigDecimal
4~ orgjunitTest
“— orgjunitAssert”
4 @ BankAccountTests
P testDeposit()

3 errors, 0 warnings, 0 infos

+

Description Resource
4 T Errors (3 items)

Path

Location

@ Syntax error, insert " to complete BankAccour BankingProject/src/orgfec line 15
@ The method deposit(BigDecimal) it BankAccour BankingProject/src/orgfec line 13
@ The method getBalance() is undefil BankAccour BankingProject/srcforg/ec line 15

The method deposit(BigDecimal) i..defined for the type BankAccount | Writable Smart Insert

13:18

Good Practices
Testing

Good Practices: Testing

* Testing Methods

* Static Testing
* Reviews, Walkthroughs, Inspections

* Dynamic Testing
* Execute program with a set of test cases
* Box Approach
* White Box vs Black Box

* Testing Level
* Unit, Integration, System

Good Practices: Testing Tools

* Compilers
e gcc, g++, javac, gfortran, intel compilers...

e Static Analysis Tools
* Lint, Coccinelle, Pylint...
* Can be utile to find Heisenbug

* Debuggers
e GDB is ok but use a front-end

|I| Converk, java |I| FirstPdf.java <+ de.vogella.jdt. packa |I| Main.java oo |I| Counker.java

package de.vogella.debug.first:

public class MNain {

l.."?r?r
I

w

args

public static void wain(3tring[] args) |
Conrt e sonrnt oy = LT CDunteri];

@ Toggle Breakpoink

&dd Bookmark. ..
&dd Task, ..

W Show Quick, Diff
Show Line Mumbers
Folding

Preferences, ..

e hawve counted " + counter.getBesulti)]):

Ckrl+5hif

[J] Counter,java [J] Main.java 23

package de.vogella.debug.first;

public class Main {

JEL.
args
x /
public static void main(String[] args) {
@ Counter counter = new Counter();
counter.count();
System.out.println("We have counted " + counter

-

.getResult());

-

= Debug - de.vogella. debug.first/srcfdefvogella/debug/first/Main. java - Eclipse

A=)

i

File Edit Refackor Rum Source Mawvigate Search Project Window Help

@il B0 iSSP AeEE G oG-

g 20 @(ise »

Iaka
u

¥ Debug 53 i O

T T = | == O || (9= variables &2

L J

= Main {13 [Java Application] Mame

= ﬁ' de.vogella, debug. First Main at localhost: 2035 O args
=% Thread [main] {Suspended {breakpoint at line 9 in Main)
= Main.main{String[]) line: 2
g CHProgram Files,Javaljreibinljavaw. exe (06.07,2009 11:30:57)

g Breakpuintsw

##H ¥ T 0

Walue
Skring[0] (id=16)

O .
[J] Convert.java (@ de.vogella.jdt.packa (m Main.java o5 [J] Counter.java 1»20 = O EE Qutline &3 laz =] 15\5 @ w | ¥ T O
package de.vogella.debuy.firstc: f## de.vogella.debug firsk
= Gp. Main
public class Main | eF main{Skring(1) : woid
= llf' W
* @param args
L
= public static void wain(3tring[] args) |
b2 Counter counter = new Counter();
counter.count () ;
Systew. cut.println("WMe hawve counted " + counter.getResult()):
}
H
= i
El consale 3 E.Tasks} ® % Ex & | @Ilﬁq M E-G- T 0
Main {13 [1ava Application] Ci\Program Files!Javaijresibintjavaw. exe (06,07, 2009 11:30:57)
Writable Smarkt Insert a:1

GP: Debugging Parallel Programs

* Parallel programs deals with the usual bugs

* In addition there are timing and synchronization
errors

 Parallel bugs often disappear when you add code to
try to identify the bug

GP: Visual Debugging Parallel
Programs

* A global view of the multiprocessor architecture
* Processors and communication links

* See which communication links are used
* Perhaps even change the data in transmission

e Utilization of each processor
e Can identify blocked processors, deadlock

e “step” through functionality?
e Lack of a global clock

* Likely won’t help with data races

GP: Debugging Tools — Total View

am?

File Edit View Group Process Thread n'a.!m‘l’u'm Debug Tools Hindow He

mpirun (7 active threa
meirundAllc_men>,0 (5 a
mpirun{Allc_nen>.1 (5 &
meirunéfillc_men>.2 (5 a
mpirundAllc_nen>,3 (5 &
mpirunAllc_men> .4 (5 |
mpirundAllc_men>.5 (5 a
npirunAllc_men> .6 (5

0172.16.8.578
1172.16.8.57 0
2172,16,8,57 ¢
3172.16.8.578
4172,16.8.598
5172,.16.8.59¢8
6172,16.8.598

l.‘-ron.p (Com.rol) ” . . .

main,
generic_start_main,
__libc_start_main,

Go Halt me

FP=TEEE6300 Punction "code®
FP=T£££6350 nypid
FP=TEE£6750 s1ze
FP-TEEE6TT0 tines
res_match
es

send_nessage

ny_message
nessage_type

Local variables:

receive_nessage

0x00000019 (25
0x7£££6328 -> 0x00000000 (0)
0x00000200 (512)

0x018608d0 (Allocated) -» 0x000|
0x018928e0 (Allocated) -> 0x000)
0x018c48f0 (Allocated) -> 0x000
0x018£b310 (Allocated) -> 0xD00S
N OOOKDONNN 10N

Functicn code in Allc2.c

KU

Heap Status Graphical Report
Opt ions
W Detect Leaks §] Relative to Baseline M

Fnnapped regior]

P.}r d region: 0x015eae00 -~ 0x015eafff

———

Jinmapped regior]

[Unnapped region: Ox01686F00 - OxO1762FFF

Process Selection

Heap Information Mtrace/&wroe |No~or

kekel;
MPI_Irecv (Smy _message[pid*size«0],
pad, MPI_ANY_TAG,

size, MPI_Ii

)

/* send everyones message back */

while ((pid = (pidel) % rnodes) I= mypid)

kmkel,
MPI_Xsend (&receive_message|pid*size+0], size, MPI_INT,

pid, message_type(pid].
)

if(k 1= -1)

/¢ MPI_Waatall (kel, &request[0].
for (3=0;3¢<(kel) 3++)
MPI_Wait(Srequest()],&status_array[j]),

/* check ny returned messages */

/* Verify to see if returned message is the same as the message sent */

vhile ((pid= (pidel) % nnodes) |= mypid)

for (k=0 k<size kes)

if (send_message[pidteizesk] |» R nessage [pid*sizeck])
*res_natch = *res_match*10 « pid;

MPI_COMM_VORLD, &xequut[kl).

MPI_COMM_WORLD, &req\mstlkl),

&status_array|0]): ¢/

Overall Totals

/

Parallel Job spirundAllc_

P woirundillc_non),
P woirundillc_nen)
P roirundille now) .

Heap

DAllocated 4«
BCorrupted Guard Blocks
HDeal located 31
[@Guard Blocks

DHoarded

Erroneous use of Language Features

* Examples
* Inconsistent parameter types for get/send and put/receive
* Required function calls
* Inappropriate choice of functions

* Symptoms
e Compile-type error (easy to fix)

* Some defects may surface only under specific conditions:
Number of processors, value of input, alignment issues

e Cause

e Lack of experience with the syntax and semantics of new
language features

* Prevention
* Check unfamiliar language features carefully

Space Decomposition

* Incorrect mapping between the problem space and the
program memory space

* Symptoms
» Segmentation fault (if array index is out of range)
* Incorrect or slightly incorrect output

* Cause

 Mapping in parallel version can be different from that in serial
version

* Array origin is different in every processor

* Additional memory space for communication can complicate
the mapping logic

* Prevention
* Validate memory allocation carefully when parallelizing code

Deadlock: Dining philosophers problem

a deadlock is a situation in which two or more
competing actions are each waiting for the other to
finish, and thus neither ever does.

think until the left fork is
available; when it is, pick it up;
think until the right fork is
available; when it is, pick it up;
when both forks are held, eat
for a fixed amount of time;
then, put the right fork down;
then, put the left fork down;
repeat from the beginning.

Race condition

* A timing dependent error involving shared state

* |t runs fine most of the time, and from time to
time, something weird and unexplained appears

Thread 1 | Thread2 | | shared State [Thread1 | Thread2 | | Shred ate
0 0

Read <- 0 Read <- 0
Increase 0 Read <- 0
Write > 1 Increase 1
Read <- 1 Increase 1
Increase 1 Write > 1
Write > 2 Write > 1

Synchronization

* Improper coordination between processes

* Well-known defect type in parallel programming
* Deadlocks, race conditions

* Symptoms
* Program hangs
* Incorrect/non-deterministic output

* Causes
* Some defects can be very subtle

e Use of asynchronous (non-blocking) communication can
lead to more synchronization defects

* Preventions
* Make sure that all communication is correctly coordinated

Good Practices
Configuration Management

GP: Configuration Management

* Track Versions
e |s that the “last” version?

e Baselines
 Which version which features?

* Build Management
* Building a project with 100 source code files
e Configuration files, several tools

* Bug Tracking

* Discovery, Assignation, Solution, etc.

* Environment Management
» Setup of a development and test environments

GP: Track Versions

* Manually versioning
* Pil.c->Pi2.c->Pi2.1.c->Pi2.1.2.c
 What is the difference between them?
* When the changes were made?

 Team development
* PilJuan.c->Pil.1Juan.c -> Pi2Juan.c
e PilClaudia.c -> Pi2Claudia.c -> Pi2.1Claudia.c
 What is the “latest” version?
* Who made the changes?

GP: Track Versions

K - X
i [) @X(-J

C:,\e_(:k out Fails
Reé\d“only copy
available

VAN

CleCk n

GP: Track Versions

C’ oW ‘ l
heCle '[’ C{,\eck om-[»
! 7) ’ ? Modif
(2] |‘&
Mod'l‘fy W | /

First cleck=in L§ | \/1-%) Cleck=n —

sucCeeds Reauives merge

V1.2

GP: Track Versions

GP: Track Versions

GP: Track Versions Tools

* VVersion Control

- O\
Ogit SV
mercurial
GitHub

o

Bitbucket

https://github.com/arrayfire

https://github.com/arrayfire

GP: Building Management

* Automation of building process
 Dependency management
* Compilation
* Linkage
 Documentation Production
Artifacts production
Code Generation
Deployment

GP: Building Management Tools

Mmaven l ”.‘3’1 L

Make

http://mrbook.org/blog/tutorials/make/

Good Practices
Architecture

GP: Architecture

» Software Architecture
* Refers to high level structures of a software systems
* A good architecture is necessary but not enough

* Reuse is a effective technique in SE
e Good structuration can be reused

* Structure Patterns
* Reuse “good” solutions to previous problems

GP: Architecture

* Pattern
e A pattern is a recurring solution to a standard problem

* A way of capture and systematize proven practices in any
discipline

* Software pattern

e Function-form relation that occurs in a context, where the
function is described in terms of the problem domain
terms as a group of unresolved tradeoffs or forces and the
form is a structure describe in solution domain terms that
achieves a good and acceptable equilibrium among these
forces

GP: Architecture - Pattern

* Problem

* Context

* Forces

* Solution

* Examples
* Know Uses

GP: Pipe and filter pattern

* Problem

An algorithm composed of ordered and independent tasks,
is required to operate in regular and ordered data. The tasks
are ordered but independent of each other, that is, if data is

available each task can carried out until completion without
interference.

Modulo Software 1 Modulo Software 2
Task A Task A

Task B Task B
Task C Task E

Task D Task F

GP: Pipe and filter pattern

e Solution

The application should be organized as a series of
computation tasks corresponding to the filters, connected
by dependencies corresponding to the pipes. The tasks
can be seen as vertices in a task graph, and the pipes
carrying information from one task to another can be seen
as a directed edge in the task graph

GP: Pipe and filter pattern

* Example: Graphics Rendering

List of polygons

Geometry

Transform

Lighting

Scan
Converter

Images

GP: Pipe and filter pattern

e Considering the problem description, granularity and
load balancing , the following forces should be
considered:

* Preserve the precise order of computations
Preserve the data order among of data among all operations

Consider the independence among operational steps, whose
processing can potentially be carried out on different pieces
of data

Distribute process evenly among all operational steps
Improve performance by decreasing execution time

GP: Manager, Workers Pattern

* Problem

* The same operation needs to be performed repeatedly
on all elements of an ordered dataset. Nevertheless data
can be operated on without specific order. It is
important, however, to preserve the order of data.

Worker 1

Worker 2

Manager

Worker n

GP: Manager, Workers Pattern

e Solution

* Introduce activity parallelism by processing multiple
datasets at the same time.

* The solution is structured with a manager and a group of
identical workers.

* The manager is responsible for preserving the order of
data.

e Each worker is capable of performing the same
processing on different pieces of data idependently.

GP: Manager, Workers Pattern

Example: The Polygon overlay problem

* The objective is to obtain the overlay of two
rectangular maps A and B

A B A+B

GP: Manager, Workers Pattern

Example: The Polygon overlay problem

| "ill'lll.'“rk':r] | ‘*1++-|.-|+H+++H+++|,
A A

_/ B . B

A
H@I o

Manager

| _ ey P
.-’Ig.r ;J‘:g | Worker 3/ :
A \ / Ba o iB
Az —

| Worker 4| eeeereaseneeenel

_/

GP: Manager, Workers Pattern

* Forces
* The order of data must be preserved.

* The operations must be performed independently on
different pieces of data.

» Data pieces may have different sizes.

* The solution must scale over the number of processing
elements.

* Mapping the processing elements to processors must
take the interconnection among the processors of the
hardware platform into account.

Good Practices
Design

Some Patterns to structure algorithms

e SPMD: In an SPMD (Single Program, Multiple Data)
program, all UEs execute the same program (Single
Program) in parallel, but each has its own set of data
(Multiple Data)

* Master Worker: A master process or thread sets up a pool
of worker processes or threads and a bag of tasks.

* Loop Parallelism: This pattern addresses the problem of
transforming a serial program whose runtime is dominated
by a set of compute intensive loops in to a parallel program

e Fork/Join: A main UE forks of f some number of other UEs t
hat then continue in parallel to accomplish some portion of
the overall work. Often the forking UE waits until the child
UEs terminate and join

GP: Design Patterns

A
vV

PATTERNS
FOR PARALLEL

PATTERNS FOR
PARALLEL SOFTWARE
DESIGN

Thanks

