
Good Practices in Parallel
and Scientific Software

Gabriel Pedraza Ferreira

gpedraza@uis.edu.co

mailto:gpedraza@uis.edu.co

Parallel Software Development

Time

Research

Universities
Supercomputing Centers

Oil & Gas

CAE
CFD

Finance
Rendering

Data Analytics
Life Sciences

Defense
Weather
Climate

Plasma Physics

2004 Present

Some Scientific Software

• Sometimes developed by only one person

• Code has no documentation

• Software has no clear structure

• There is only a copy of code source

• Tools: text editor and a compiler

Software Development
Complexity
• Problem Domain

• Life Science, Finance, Image Processing, Weather

• Software Architecture
• Individual Application -> Multiuser Application (3X) ->

Reusable Component (3X)

• Technical Complexity
• Programming Languages, Software Frameworks,

Software Libraries, Target Platforms

Software Quality

• Reliability
• Resiliency, Solidity

• Efficiency
• Performance, Scalability

• Security
• Vulnerability

• Maintainability
• Adaptability, Portability, Transferability (one team to

other)

Good Practices

• Architecture

• Design

• Coding

• Peer Review

• Testing

• Configuration Management

Good Practices
Coding

Good Practices: Coding

• Comment your code
• Warning DRY

• i.e. while (*n++=*i++);

• Naming conventions
• Variables a1, a2, a3 … meaning?

• Keep the code simple
• Another might (will) modify your code in future

• Portability
• Don’t use hard code (IPs, files, users, urls, ports, etc.)

Good Practices: Coding Tools

• IDE: Integrated Development Environment

Good Practices
Testing

Good Practices: Testing

• Testing Methods
• Static Testing

• Reviews, Walkthroughs, Inspections

• Dynamic Testing
• Execute program with a set of test cases

• Box Approach
• White Box vs Black Box

• Testing Level
• Unit, Integration, System

Good Practices: Testing Tools

• Compilers
• gcc, g++, javac, gfortran, intel compilers…

• Static Analysis Tools
• Lint, Coccinelle, Pylint…

• Can be utile to find Heisenbug

• Debuggers
• GDB is ok but use a front-end

GP: Debugging Parallel Programs

• Parallel programs deals with the usual bugs

• In addition there are timing and synchronization
errors

• Parallel bugs often disappear when you add code to
try to identify the bug

GP: Visual Debugging Parallel
Programs
• A global view of the multiprocessor architecture

• Processors and communication links

• See which communication links are used
• Perhaps even change the data in transmission

• Utilization of each processor
• Can identify blocked processors, deadlock

• “step” through functionality?
• Lack of a global clock

• Likely won’t help with data races

GP: Debugging Tools – Total View

Erroneous use of Language Features

• Examples
• Inconsistent parameter types for get/send and put/receive

• Required function calls

• Inappropriate choice of functions

• Symptoms
• Compile-type error (easy to fix)

• Some defects may surface only under specific conditions:
Number of processors, value of input, alignment issues

• Cause
• Lack of experience with the syntax and semantics of new

language features

• Prevention
• Check unfamiliar language features carefully

Space Decomposition

• Incorrect mapping between the problem space and the
program memory space

• Symptoms
• Segmentation fault (if array index is out of range)
• Incorrect or slightly incorrect output

• Cause
• Mapping in parallel version can be different from that in serial

version
• Array origin is different in every processor
• Additional memory space for communication can complicate

the mapping logic

• Prevention
• Validate memory allocation carefully when parallelizing code

Deadlock: Dining philosophers problem

 think until the left fork is
available; when it is, pick it up;

 think until the right fork is
available; when it is, pick it up;

 when both forks are held, eat
for a fixed amount of time;

 then, put the right fork down;
 then, put the left fork down;
 repeat from the beginning.

a deadlock is a situation in which two or more
competing actions are each waiting for the other to
finish, and thus neither ever does.

Race condition

• A timing dependent error involving shared state

• It runs fine most of the time, and from time to
time, something weird and unexplained appears

Thread 1 Thread 2 Shared State

0

Read <- 0

Increase 0

Write -> 1

Read <- 1

Increase 1

Write -> 2

Thread 1 Thread 2 Shared State

0

Read <- 0

Read <- 0

Increase 1

Increase 1

Write -> 1

Write -> 1

Synchronization
• Improper coordination between processes

• Well-known defect type in parallel programming

• Deadlocks, race conditions

• Symptoms
• Program hangs

• Incorrect/non-deterministic output

• Causes
• Some defects can be very subtle

• Use of asynchronous (non-blocking) communication can
lead to more synchronization defects

• Preventions
• Make sure that all communication is correctly coordinated

Good Practices
Configuration Management

GP: Configuration Management

• Track Versions
• Is that the “last” version?

• Baselines
• Which version which features?

• Build Management
• Building a project with 100 source code files
• Configuration files, several tools

• Bug Tracking
• Discovery, Assignation, Solution, etc.

• Environment Management
• Setup of a development and test environments

GP: Track Versions

• Manually versioning
• Pi1.c -> Pi2.c -> Pi2.1.c -> Pi2.1.2.c

• What is the difference between them?

• When the changes were made?

• Team development
• Pi1Juan.c -> Pi1.1Juan.c -> Pi2Juan.c

• Pi1Claudia.c -> Pi2Claudia.c -> Pi2.1Claudia.c

• What is the “latest” version?

• Who made the changes?

GP: Track Versions

GP: Track Versions

GP: Track Versions

GP: Track Versions

GP: Track Versions Tools

• Version Control

https://github.com/arrayfire

https://github.com/arrayfire

GP: Building Management

• Automation of building process
• Dependency management

• Compilation

• Linkage

• Documentation Production

• Artifacts production

• Code Generation

• Deployment

GP: Building Management Tools

http://mrbook.org/blog/tutorials/make/

Make

Good Practices
Architecture

GP: Architecture

• Software Architecture
• Refers to high level structures of a software systems

• A good architecture is necessary but not enough

• Reuse is a effective technique in SE
• Good structuration can be reused

• Structure Patterns
• Reuse “good” solutions to previous problems

GP: Architecture

• Pattern
• A pattern is a recurring solution to a standard problem

• A way of capture and systematize proven practices in any
discipline

• Software pattern
• Function-form relation that occurs in a context, where the

function is described in terms of the problem domain
terms as a group of unresolved tradeoffs or forces and the
form is a structure describe in solution domain terms that
achieves a good and acceptable equilibrium among these
forces

GP: Architecture - Pattern

• Problem

• Context

• Forces

• Solution

• Examples

• Know Uses

GP: Pipe and filter pattern

• Problem
An algorithm composed of ordered and independent tasks,
is required to operate in regular and ordered data. The tasks
are ordered but independent of each other, that is, if data is
available each task can carried out until completion without
interference.

Modulo Software 1
Task A
Task B
Task C
Task D

Modulo Software 2
Task A
Task B
Task E
Task F

GP: Pipe and filter pattern

• Solution
The application should be organized as a series of
computation tasks corresponding to the filters, connected
by dependencies corresponding to the pipes. The tasks
can be seen as vertices in a task graph, and the pipes
carrying information from one task to another can be seen
as a directed edge in the task graph

Task A Task B Task D Task D

GP: Pipe and filter pattern

• Example: Graphics Rendering

Geometry

Transform

Clip

Lighting

Scan
Converter

List of polygons

Images

GP: Pipe and filter pattern

• Considering the problem description, granularity and
load balancing , the following forces should be
considered:
• Preserve the precise order of computations

• Preserve the data order among of data among all operations

• Consider the independence among operational steps, whose
processing can potentially be carried out on different pieces
of data

• Distribute process evenly among all operational steps

• Improve performance by decreasing execution time

GP: Manager, Workers Pattern
• Problem

• The same operation needs to be performed repeatedly
on all elements of an ordered dataset. Nevertheless data
can be operated on without specific order. It is
important, however, to preserve the order of data.

Manager

Worker 1

Worker 2

Worker n

GP: Manager, Workers Pattern

• Solution
• Introduce activity parallelism by processing multiple

datasets at the same time.

• The solution is structured with a manager and a group of
identical workers.

• The manager is responsible for preserving the order of
data.

• Each worker is capable of performing the same
processing on different pieces of data idependently.

GP: Manager, Workers Pattern

Example: The Polygon overlay problem

• The objective is to obtain the overlay of two
rectangular maps A and B

GP: Manager, Workers Pattern

Example: The Polygon overlay problem

GP: Manager, Workers Pattern

• Forces
• The order of data must be preserved.

• The operations must be performed independently on
different pieces of data.

• Data pieces may have different sizes.

• The solution must scale over the number of processing
elements.

• Mapping the processing elements to processors must
take the interconnection among the processors of the
hardware platform into account.

Good Practices
Design

Some Patterns to structure algorithms

• SPMD: In an SPMD (Single Program, Multiple Data)
program, all UEs execute the same program (Single
Program) in parallel, but each has its own set of data
(Multiple Data)

• Master Worker: A master process or thread sets up a pool
of worker processes or threads and a bag of tasks.

• Loop Parallelism: This pattern addresses the problem of
transforming a serial program whose runtime is dominated
by a set of compute intensive loops in to a parallel program

• Fork/Join: A main UE forks of f some number of other UEs t
hat then continue in parallel to accomplish some portion of
the overall work. Often the forking UE waits until the child
UEs terminate and join

GP: Design Patterns

Thanks

