
1© Bull, 2012

02/07/15 Yiannis Georgiou

R&D Sofware Architect

SLURM Workload and
Resource Management in HPC

Users and Administrators Tutorial

2© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

3© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

4© Bull, 2014

High Performance Computing

 System Software:
 Operating System, Runtime
 System, Resource Management,
 I/O System, Interfacing to External
 Environments

5© Bull, 2014

Resource and Job Management Systems

The goal of a Resource and Job Management System (RJMS) is
to satisfy users' demands for computation and assign resources
to user jobs with an efficient manner.

•Direct and constant knowledge
of resources

•Multifacet procedures with
complex internal functions

RJMS Importance
Strategic Position but complex
internals:

6© Bull, 2014

Resource and Job Management System Layers

This assignement involves three principal abstraction layers:
•Job Management: declaration of a job and demand of resources
 and job characteristics,
•Scheduling: matching of the jobs upon the resources,
•Resource Management : launching and placement of job instances
 upon the computation resources along with the job’s control of execution

7© Bull, 2014

Resource and Job Management System Concepts

RJMS
subsystems

Principal Concepts Advanced Features

Resource
Management

-Resource Treatment (hierarchy, partitions,..)
-Job Launcing, Propagation, Execution
control
-Task Placement (topology,binding,..)

- High Availability
- Energy Efficiency
- Topology aware placement

Job
Management

-Job declaration (types, characteristics,...)
-Job Control (signaling, reprioritizing,...)
-Monitoring (reporting, visualization,..)

- Authentication (limitations,
security,..)
- QOS (checkpoint, suspend,
accounting,...)
- Interfacing (MPI libraries,
debuggers, APIs,..)

Scheduling
-Scheduling Algorithms (builtin, external,..)
-Queues Management (priorities,multiple,..)

- Advanced Reservation

8© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

9© Bull, 2012

SLURM scalable and flexible RJMS

●SLURM open-source Resource and Job Management System,
sources freely available under the GNU General Public License.
●Portable: written in C with a GNU autoconf configuration
engine.
●Modular: Based on a plugin mechanism used to support
different kind of scheduling policies, interconnects, libraries, etc
●Robust: highly tolerant of system failures, including failure of
the node executing its control functions.
●Scalable: designed to operate in a heterogeneous cluster with
up to tens of millions of processors. It can accept 1,000 job
submissions per second and fully execute 500 simple jobs per
second (depending upon hardware and system configuration).
●Power Management: Job can specify their desired CPU
frequency and power use by job is recorded. Idle resources can
be powered down until needed.

10© Bull, 2012

SLURM History and Facts

●Initially developed in LLNL since 2003, passed to SchedMD in
2011
●Multiple enterprises and research centers have been
contributing to the project (LANL, CEA, HP, BULL, BSC, CRAY
etc)
●Large international community, active mailing lists (support by
main developers)

● Contributions (various external software and standards are
integrated upon SLURM)

● As of the June 2014 Top500 supercomputer list, SLURM is
being used on six of the ten most powerful computers in the
world including the no1 system, Tianhe-2 with 3,120,000
computing cores.

11© Bull, 2014

BULL and SLURM

BULL initially started to work with SLURM in 2005

About 6 SLURM-dedicated engineers since 2013

– Research upon the field of Resource Management and Job
Scheduling (National/European financed projects, PhDs) and
definition of RoadMap

– Development of new SLURM features: all code dropped in
the open-source

– Support upon clusters : Training, Confgiruation, Bugs, Feature
Requests, etc

Integrated as the default RJMS into the BULL- HPC software
stack since 2006

Close development collaboration with SchedMD and CEA

Organaziation of Slurm User Group (SUG) Conference (User,
Admin Tutorials + Technical presentation for developpers)
http://www.schedmd.com/slurmdocs/publications.html

12© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

13© Bull, 2014

SLURM sources and Documentation

-For User and Admins latest documentation:
http://slurm.schedmd.com/documentation.html

-Detailed man pages for commands and configuration files
http://slurm.schedmd.com/man_index.html

-All SLURM related publications and presentations:
http://slurm.schedmd.com/publications.html

Slurm sources :
- Download a repo (stable or development) from: http://www.schedmd.com/#repos
- Or the latest code from: git clone git://github.com/SchedMD/slurm.git

http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/man_index.html
http://slurm.schedmd.com/publications.html
http://www.schedmd.com/#repos

14© Bull, 2014

SLURM Architecture

15© Bull, 2014

SLURM Terms

•Computing node Computer used for the execution of programs
•Partition Group of nodes into logical sets
•Job allocation of resources assigned to a user for some time
•Step sets of (possible parallel) tasks with a job

16© Bull, 2014

SLURM Principles

Architecture Design:

– one central controller daemon slurmctld

– A daemon upon each computing node slurmd

– One central daemon for the database controls slurmdbd

Principal Concepts:

– a general purpose plugin mechanism (for features such
as scheduling policies, process tracking, etc)

– the partitions which represent group of nodes with
specific characteristics (job limits, access controls, etc)

– one queue of pending work

– The job steps which are sets of (possibly parallel) tasks
within a job

17© Bull, 2014

User Commands

srun allocate resources (number of nodes, tasks, partition,
constraints, etc.) launch a job that will execute on each
allocated cpu.

salloc allocate resources (nodes, tasks, partition, etc.), either
run a command or start a shell. Request launch srun from
shell. (interactive commands within one allocation)

sbatch allocate resources (nodes, tasks, partition, etc.) Launch
a script containing sruns for series of steps.

sbcast transmit file to all nodes of a running job. Used in sbatch
or salloc.

sattach attach to running job for debuggers.

18© Bull, 2014

User & Admin Commands

sinfo display characteristics of partitions
squeuedisplay jobs and their state
scancel cancel a job or set of jobs.
scontrol display and changes characteristics of jobs, nodes,

partitions.
sstat show status of running jobs.
sacct display accounting information on jobs.
sprio show factors that comprise a jobs scheduling priority
smap graphically show information on jobs, nodes, partitions

19© Bull, 2014

Admin Commands

sacctmgr setup accounts, specify limitations on users and
groups.

sreport display information from accounting database on jobs,
users, clusters.

sview graphical view of cluster. Display and change
characteristics of jobs, nodes, partitions.

strigger show, set, clear event triggers. Events are usually
system events such as an equipement failure.

sshare view sharing information from multifactor plugin.

20© Bull, 2012

Simple Example of usage

>srun -p P2 -N2 -n4 sleep 120 &
>srun -p P3 sleep 120 &
>srun -w trek0 sleep 120 &
>sleep 1
srun: job 108 queued and waiting for resources

>sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
all* up infinite 3 alloc trek[0-2]
all* up infinite 1 idle trek3
P2 up infinite 3 alloc trek[0-2]
P2 up infinite 1 idle trek3
P3 up infinite 3 alloc trek[0-2]
P3 up infinite 1 idle trek3

>squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 106 P2 sleep slurm R 0:01 2 trek[1-2]
 107 P3 sleep slurm R 0:01 1 trek1
 108 all sleep slurm PD 0:00 1 (Resources)
 105 all sleep slurm R 0:02 1 trek0

21© Bull, 2012

Simple Example of usage

> scontrol show job 108

JobId=108 Name=sleep
 UserId=slurm(200) GroupId=slurm(200)
 Priority=4294901733 Account=slurm QOS=normal
 JobState=PENDING Reason=Resources Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=0 ExitCode=0:0
 RunTime=00:00:00 TimeLimit=UNLIMITED TimeMin=N/A
 SubmitTime=2011-07-12T09:15:39 EligibleTime=2011-07-12T09:15:39
 StartTime=2012-07-11T09:15:38 EndTime=Unknown
 PreemptTime=NO_VAL SuspendTime=None SecsPreSuspend=0
 Partition=all AllocNode:Sid=sulu:8023
 ReqNodeList=trek0 ExcNodeList=(null)
 NodeList=(null)
 NumNodes=1 NumCPUs=1 CPUs/Task=1 ReqS:C:T=*:*:*
 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
 Features=(null) Gres=(null) Reservation=(null)
 Shared=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=/bin/sleep
 WorkDir=/app/slurm/rbs/_Scripts
 Switches=0 Wait-for-Switch=0 (seconds)

22© Bull, 2014

Configuration

Slurm configuration:Through
configuration files responsible,
for the function of different daemons
present on the management and
the computing nodes

slurm.confslurm.conf
• Indispensable on all nodes
(management-compute)
slurmdbd.confslurmdbd.conf
• Used if slurmdbd accounting
• Only on management node
topology.conftopology.conf
• Used if topology plugin activated
• Indispensable on all nodes
(management-compute)
gres.confgres.conf
• Used if gres plugin activated
• Only on computing nodes
cgroup.confcgroup.conf
• Used if cgroup plugin activated
• Only on computing nodes

23© Bull, 2012

Configuration files

topology.conf topology.conf
• Switch hierarchy
gres.confgres.conf
• Generic resources details
• Device files
cgroup.confcgroup.conf
• Mount point
• Release agent path
• Cgroup subsystems parameters

slurm.confslurm.conf
• Low level configuration
• Management policies
• Scheduling policies
• Allocation policies
• Node definition
• Partition definition
slurmdbd.conf slurmdbd.conf
• Type of persistent storage (DB)
• Location of storage

Controller Compute node

Mandatory slurm.conf
slurmdbd.conf

slurm.conf

Optional prologs
epilogs

topology.conf

gres.conf
cgroup.conf

topology.conf

24© Bull, 2014

Configuration (slurm.conf) – Part 1

Compute Nodes
NodeName=cuzco[1-10] Procs=16 Sockets=2 CoresPerSocket=8 ThreadsPerCore=1 State=UNKNOWN RealMemory=38000
NodeName=cuzco[10-20] Procs=32 Sockets=2 CoresPerSocket=8 ThreadsPerCore=2 State=UNKNOWN RealMemory=46000

 # Partitioning
PartitionName=exclusive Nodes=cuzco[1-20] MaxTime=INFINITE State=UP Priority=10 Shared=Exclusive
PartitionName=shared Nodes=berlin[1-20] Default=YES MaxTime=INFINITE State=UP Priority=30
PartitionName=procs16 Nodes=berlin[1-10] MaxTime=INFINITE State=UP Priority=30
PartitionName=procs32 Nodes=berlin[10-20] MaxTime=INFINITE State=UP Priority=30

Node definition
 Characteristics (sockets, cores, threads, memory, features)
 Network addresses

Partition definition
 Set of nodes
 Sharing
 Priority/preemption

25© Bull, 2012

Partitions

Partitions are used in SLURM to group nodes/resources characteristics

Partition 1: 32 cores and high_memory

Partition 2: 32 cores and low_memory

Partition 3: 64 cores

26© Bull, 2014

More on Partitions

Shared Option
Controls the ability of the partition to execute more than one job on a
resource (node, socket, core)

EXCLUSIVE allocates entire node (overrides cons_res ability to allocate
cores and sockets to multiple jobs)

NO sharing of any resource.
YES all resources can be shared, unless user specifies –exclusive on

srun | salloc | sbatch

Important Note: To view the particular parameters of partitions users can use
the “scontrol show partitionsscontrol show partitions” command

27© Bull, 2014

Configuration (slurm.conf) – Part 2
#slurm.conf

Basic parameters
ClusterName=cuzco
ControlMachine=cuzco0
#ControlAddr=127.0.0.1
SlurmUser=slurm
SlurmctldPort=6817
SlurmdPort=6818
AuthType=auth/munge

States saving
StateSaveLocation=/var/spool/slurm
SlurmdSpoolDir=/var/spool/slurmd.%n
SlurmctldPidFile=/var/run/slurmctld.pid
SlurmdPidFile=/var/run/slurmd.%n.pid

Logging
SlurmctldDebug=5
SlurmctldLogFile=/var/log/slurmctld.log
SlurmdDebug=5
SlurmdLogFile=/var/log/slurmd.%n.log

Timers
SlurmctldTimeout=300
SlurmdTimeout=300

Management Policies

 Location of controllers,
spool, state info
 Authentication
 Logging
 Prolog / epilog scripts

28© Bull, 2014

Configuration (slurm.conf) – Part 3

Process-Task tracking
ProctrackType=proctrack/linuxproc
TaskPlugin=task/affinity
TaskPluginParam=Cpusets

Selection of Resources
SelectType=select/cons_res
SelectTypeParameters= CR_Core_Memory

Scheduling
SchedulerType=sched/backfill
FastSchedule=1
PreemptMode=REQUEUE
PreemptType=preempt/qos
FastSchedule=1

Scheduling policies
 Priority
 Preemption
 Backfill

Allocation policies
 Entire nodes or 'consumable

resources'
 Task Affinity (lock task on CPU)
 Topology (minimum number of

switches)

29© Bull, 2014

Plugins in SLURM

 -Authentication (i.e. munge,)
 -Job Accounting Gather (i.e. linux, cgroups)
 -Accounting Storage (i.e. mysql, postgres)
 -Generic Resources (GRES) (i.e. gpu, nic)
 -Job Submission (i.e. partitions, lua)
 -MPI (i.e. openmpi, pmi2)
 -Energy Accounting (i.e. rapl,ipmi)
 -Preemption (i.e. partitions,qos)
 -Priority (i.e. basic,multifactor)
 -Process Tracking (i.e. linux,cgroup)
 -Scheduler (i.e. builtin,backfill)
 -Resource Selection (i.e. linear,cons_res)
 -Task (i.e. affinity,cgroups)
 -Topology (i.e. tree,3d_torus)

30© Bull, 2012

Starting SLURM

● Once the principal configuration parameters are correctly set
the services can be started on management and computing nodes
by launching the particular scripts on all nodes:
/etc/init.d/slurm {start, stop, restart, …}/etc/init.d/slurm {start, stop, restart, …}

●Alternatively the services can be started by executing the commands
slurmctld on the controller and slurmd on the computing nodes

●The services are normally launched in the background with logging in
the particular files set in the slurm.conf. However it is possible to start
the deamons in the foreground with -D followed by v for different
verbosity levels. This is useful for testing.
slurmctld -Dvvvvvv slurmctld -Dvvvvvv
slurmd -Dvvvvvv

31© Bull, 2012

Hands-ON Exercises

1.Install MUNGE for authentication. Make sure the MUNGE daemon, munged is
started before you start the SLURM daemons.
2.Install SLURM either creating a tgz from git or downloading an existing tgz
3.cd to the directory containing the SLURM source and type ./configure with the
following options –prefix=/usr/local/ --enable-multiple-slurmd
4.Type make to compile SLURM.
5.Type make install to install the programs, documentation, libraries, header files,
etc.
6.Create the slurm User upon all nodes of the cluster.
7.Create parent directories for SLURM's log files, process ID files, state save
directories, etc. are not created by SLURM. They must be created and made
writable by SlurmUser as needed prior to starting SLURM daemons.
8. Create a basic slurm.conf file with FIFO prioritization and scheduling and start
the deamons

Exercise 1:SLURM Installation and initial basic configuration
upon personal environment using multiple slurmd

32© Bull, 2012

Hands-ON Exercises

3) Set two different partitions that have the same resources but one enables
Exclusive allocation and the other allows sharing of nodes. Observe the logging
in the particular files

2) Start slurm services in foreground and observe the outputs. Verify that everything
is set correctly and restart in the background

33© Bull, 2012

Job Submission

srun launches a job that allocates resources (number of nodes,
 tasks, etc.) and is executed on each allocated cpu.
Some basic parameters for srun command:
-N number of nodes
-n number of tasks
--exclusive for exclusive acces of nodes
Example: srun -N2 -n1 –exclusive hostname

sbatch launches a script that allocates resources and may contain
 multiple sruns for series of steps

Basic parameters similar with srun
Execution script may contain #SBATCH options to declare the parameters:

Example sbatch script:
>cat job.sh
 #!/bin/sh
 #SBATCH -N2
 #SBATCH -n2
 #SBATCH –exlusive
 srun hostname

Example launching sbatch
script:
>sbatch ./job.sh
Submitted batch job 18
>cat slurm-18.out
cuzco29
cuzco30

34© Bull, 2012

Job Submission

salloc is used to allocate resources for a job interactively. Typically
 this is used to allocate resources and spawn a shell. The
 shell be used to execute srun commands

Basic parameters similar with srun and sbatch
It will also set environmental variables such as:
SLURM_JOB_ID
SLURM_TASKS_PER_NODE
SLURM_JOB_NODELIST

Example launching salloc:
>salloc -N2
Salloc Granted job allocation 145
>srun -N2
 cuzco29
 cuzco30
>echo $SLURM_JOB_ID
145

35© Bull, 2012

Job and node monitoring

scontrol can display and change characteristics of jobs,
nodes, partitions

Command scontrol for detailed info about job or jobs:
Example: scontrol show job <JobID>

squeue display jobs and their state

Basic parameters for squeue command:
-a Display info about all jobs and partitions
-l Report more info concerning all jobs
-j <job_list> Report more info about particular job or jobs
Example: squeue -l -j 12,13

sinfo display node and partition oriented states and
characteristics

Command sinfo for node oriented information
Example: sinfo -Nel

36© Bull, 2012

Job and node monitoring

scontrol can display and change characteristics of jobs,
nodes, partitions

Command scontrol for detailed info about job or jobs:
Example: scontrol show job <JobID>

squeue display jobs and their state

Basic parameters for squeue command:
-a Display info about all jobs and partitions
-l Report more info concerning all jobs
-j <job_list> Report more info about particular job or jobs
Example: squeue -l -j 12,13

sinfo display node and partition oriented states and
characteristics

Command sinfo for node oriented information
Example: sinfo -Nel

37© Bull, 2012

Job cancelation

scancel cancel a pending or running job, set of jobs or send a signal
 to a job or set of job

Basic parameters for scancel command:
--signal to send a signal to a job
Scancel <job-id> to cancel the job

38© Bull, 2012

Example Exercise

Launch a simple job of 2 tasks upon 2 nodes that sleeps for 60 seconds
and monitor its execution and characteristics

[georgioy@cuzco27 ~]$ srun -N2 -n2 sleep 60&
[georgioy@cuzco27 ~]$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 9 all sleep georgioy R 0:03 2 cuzco[29-30]
[georgioy@cuzco27 ~]$ scontrol show job 9
JobId=9 Name=sleep
 UserId=georgioy(50071) GroupId=bull(1638)
 Priority=132 Account=students QOS=devel
 JobState=COMPLETED Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=0 ExitCode=0:0
 RunTime=00:01:01 TimeLimit=UNLIMITED TimeMin=N/A
 SubmitTime=2011-09-02T13:58:39 EligibleTime=2011-09-02T13:58:39
 StartTime=2011-09-02T13:58:39 EndTime=2011-09-02T13:59:40
 PreemptTime=None SuspendTime=None SecsPreSuspend=0
 Partition=all AllocNode:Sid=cuzco27:7952
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=cuzco[29-30]
 BatchHost=cuzco29
 Command=/bin/sleep
 WorkDir=/home_nfs/georgioy
 ...

39© Bull, 2012

Hands-ON Exercises

4) Create an interactive job that will ask for 3 tasks on 3 nodes and
then launch a step that prints the hostname of each node.
Monitor the execution of the job and the state of the nodes.

6) Create a job script that asks for 6 tasks in total with 2 tasks per node and print
the number of the JOB_ID and the number of cpus per node.
Redirect the output on a particular file using the existing parameter.
Execute the script and check out its result upon the created output file.

5) Create a job script that asks for 2 tasks on 2 nodes and launches a step
that sleeps for 4 minutes.
Monitor the execution of the job and the state of the nodes.
After some time cancel the job and monitor the state of the nodes.

40© Bull, 2012

Reservations

scontrol command can be also used for reservations
It provides the ability to create, update and delete
advanced reservations for resources allocations

Basic parameters that need to be used:
Starttime,Duration, User, NodeCnt or NodeList
Once the reservation is made the user can submit a job upon the reserved
Resources and this job will start on the starttime.

Examples:
>scontrol: create res StartTime=2009-04-01T08:00:00 Duration=5:00:00 Users=toto NodeCnt=10
 Reservation created: toto_1
>scontrol: update Reservation=toto_1 Flags=Overlap NodeCnt=20

An alternative way to start a job in a particular moment in the future is
the –begin-time option of the submission commands

41© Bull, 2012

Visualization Interface

sview graphical view of cluster resources, partitions and
Jobs. Priviledged users have the ability to change
various characteristics of resources, partitions, jobs
and to submit sbatch jobs.

42© Bull, 2012

Hands-ON Exercises

7) Create a reservation that will ask for 2 CPUs of 2 nodes, that will start
after 5 minutes and that will last for 10 minutes. Launch a simple sbatch
script to be executed upon this reservation.

8) Launch a simple srun job that will start after some minutes and observe its
execution with sview

43© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

44© Bull, 2012

SLURM Accounting

Accounting based upon Mysql database

Robust and scalable (confirmed upon Tera100 cluster)

Command for database and accounting configuration: sacctmgr

Fairsharing and Preemption scheduling techniques based
upon the accounting infrastructure

>sacctmgr add cluster snowflake>sacctmgr add cluster snowflake
>sacctmgr add account users Cluster=snowflake Description="none" Organization="none">sacctmgr add account users Cluster=snowflake Description="none" Organization="none"
>sacctmgr list users>sacctmgr list users
 User Def Acct Admin User Def Acct Admin
---------- ---------- --------- ---------- ---------- ---------
 gohn students None gohn students None
 root root Administ+ root root Administ+
 slurm professors None slurm professors None

file:///home/gohn/BULL/diafora/Simple%20Linux%20Utility%20for%20Resource%20Management-accounting.html

45© Bull, 2012

Accounting

Commands

Sacct reports resource usage for running or terminated jobs.
Sstat reports on running jobs, including imbalance between tasks.
Sreport generates reports based on jobs executed in a time interval.
Sacctmgr is used to create account and modify account settings.

Plugins associated with resource accounting

AccountingStorageType controls how information is recorded (MySQLl with
SlurmDBD is best)

JobAccntGatherType controls the mechanism used to gather data. (OS
Dependent)

JobCompType controls how job completion information is recorded.

46© Bull, 2012

Accounting (associations)

An Association is a combination of a Cluster, a User, and an
Account.
 An accounting database may be used by multiple Clusters.
 Account is a slurm entity.
 User is a Linux user.

Use –account srun option.

With associations, a user may have different privileges on different
clusters.

A user may also be able to use different accounts, with different
privileges.

Multiple users may launch jobs on a linux account.

47© Bull, 2012

Sacctmgr

Account Options
Clusters to which the Account has access
Name, Description and Organization.
Parent is the name of an account for which this account is a child.

User Options
Account(s) to which the user belongs.
AdminLevel is accounting privileges (for sacctmgr). None, Operator, Admin
Cluster limits clusters on which accounts user can be added to.
DefaultAccount is the account for the user if an account is not specified on

srun
Partition is the a partition an association applies to.

48© Bull, 2012

Accounting Limits Enforcement

If a user has a limit set SLURM will read in those, if not we will refer to the
account associated with the job. If the account doesn't have the limit set we will
refer to the cluster's limits. If the cluster doesn't have the limit set no limit will be
enforced.

Some (but not all limits are)

Fairshare= Integer value used for determining priority. Essentially this is the amount of
claim this association and it's children have to the above system. Can also be the
string "parent", this means that the parent association is used for fairshare.

GrpCPUMins= A hard limit of cpu minutes to be used by jobs running from this
association and its children. If this limit is reached all jobs running in this group will be
killed, and no new jobs will be allowed to run. (GrpCPUs, GrpJobs, GrpNodes,
GrpSubmitJobs, GrpWall)

MaxCPUMinsPerJob= A limit of cpu minutes to be used by jobs running from this
association. If this limit is reached the job will be killed will be allowed to run.
(MaxCPUsPerJob, MaxJobs, MaxNodesPerJob, MaxSubmitJobs,
MaxWallDurationPerJob)

QOS (quality of service) comma separated list of QOS's this association is able to run.

Important Note: To activate the accounting limitations and QOSyou need
to add the following parameter in slurm.conf, distribute the slurm.conf
on all nodes and restart the deamons: AccountingStorageEnforce=limits, qosAccountingStorageEnforce=limits, qos

49© Bull, 2012

Partitions and QOS

Partitions and QOS are used in SLURM to group nodes and jobs
characteristics

The use of Partitions and QOS (Quality of Services) entities in SLURM
is orthogonal:

– Partitions for grouping resources characteristics

– QOS for grouping limitations and priorities

Partition 1: 32 cores and high_memory

Partition 2: 32 cores and low_memory

Partition 3: 64 cores

QOS 1:
-High priority
-Higher limits

QOS 2:
-Low Priority
-Lower limits

50© Bull, 2012

Partitions and QOS Configuration

Partition Definitions
PartitionName=all Nodes=trek[0-3] Shared=NO Default=YES
PartitionName=P2 Nodes=trek[0-3] Shared=NO Priority=2 PreemptMode=CANCEL
PartitionName=P3 Nodes=trek[0-3] Shared=Exclusive Priority=3 PreemptMode=REQUEUE

>sacctmgr add qos name=lowprio priority=10 PreemptMode=Cancel GrpCPUs=10 MaxWall=60 MaxJobs=20>sacctmgr add qos name=lowprio priority=10 PreemptMode=Cancel GrpCPUs=10 MaxWall=60 MaxJobs=20
>sacctmgr add qos name=hiprio priority=100 Preempt=lowprio GrpCPUs=40 MaxWall=120 MaxJobs=50>sacctmgr add qos name=hiprio priority=100 Preempt=lowprio GrpCPUs=40 MaxWall=120 MaxJobs=50
>sacctmgr list qos>sacctmgr list qos
 Name Priority Preempt PreemptMode GrpCPUs MaxJobs MaxWall Name Priority Preempt PreemptMode GrpCPUs MaxJobs MaxWall
---------- ---------- ---------- ---------- ----------- -- ---------- -------- ----------- ------- ---------- ---------- ---------- ---------- ----------- -- ---------- -------- ----------- -------
 lowprio 10 cancel 10 20 60 lowprio 10 cancel 10 20 60
 hiprio 100 lowprio 40 50 120 hiprio 100 lowprio 40 50 120

Partitions Configuration:Partitions Configuration:
In slurm.conf fileIn slurm.conf file

QOS Configuration:QOS Configuration:
In DatabaseIn Database

51© Bull, 2012

More on QOS

Used to provide detailed limitations and prioritiees on jobs

Every user/account will have multiple allowed QOS upon
which he may send jobs with the –qos parameter but only
one default QOS in case he doesn't precise a –qos
parameter in his submission

Important Note: To view the particular parameters of QOS provided by the admins
 users can use the “sacctmgr show associationssacctmgr show associations” command

52© Bull, 2012

Usage Guide – Accounting

sacct displays accounting information for jobs and steps

Some basic parameters for sacct command:
-b Displays a brief listing (jobid,status,exitcode)
-l a long listing of jobs characteristics
--format <param1,param2,> to select the actual fields to be shown

Example:
>sacct –format=jobid,elapsed,ncpus,ntasks,state
sacct --format=jobid,elapsed,ncpus,ntasks,state
Jobid Elapsed Ncpus Ntasks State
---------- ---------- ---------- -------- ----------
3 00:01:30 2 1 COMPLETED
3.0 00:01:30 2 1 COMPLETED
4 00:00:00 2 2 COMPLETED
4.0 00:00:01 2 2 COMPLETED
5 00:01:23 2 1 COMPLETED
5.0 00:01:31 2 1 COMPLETED

53© Bull, 2012

Usage Guide – Reporting

sreport generates reports of job usage and cluster utilization

The syntax of this command is like:
<type><REPORT><OPTIONS> where <type> can be cluster, job or user

 and each type has various reports and options
Example1: sreport job sizesbyaccount
Example2: sreport cluster AccountUtilizationByUser
Example3: sreport user topusage account=gohn

Example:
>sreport cluster utilization

54© Bull, 2014

SLURM scheduling / allocation procedures

Workload Submission

Job Allocation:
Network Topology

Internal Node Topology
Distribution of Tasks on Nodes

Distribution of Tasks on Sockets
Binding of Tasks

Single Job Dispatch

Job Scheduling:
FIFO

Prioritization
FairSharing

Backfill
Preemption

Job Execution

55© Bull, 2014

SLURM scheduling / allocation procedures

Workload Submission

Single Job Dispatch

Job Scheduling:
FIFO

Prioritization
FairSharing

Backfill
Preemption

56© Bull, 2014

SLURM Scheduling

SLURM supports various scheduling policies and
optimization techniques (non-exhaustive list) :

Backfill

Preemption

Fairsharing

Advantage: Techniques can be supported simultaneously

file:///home/gohn/BULL/clients/TUDresden/figures/RJMS_scheduling_policies.pdf

57© Bull, 2014

Multifactor Priority in SLURM

Various factors can take part in the formula through the
MultiFactor plugin:

Job_priority =

(PriorityWeightAge) * (age_factor) +

(PriorityWeightFairshare) * (fair-share_factor) +

(PriorityWeightJobSize) * (job_size_factor) +

(PriorityWeightPartition) * (partition_factor)

58© Bull, 2014

Fairsharing in SLURM

User and Group accounts created in the database

Inheritance between Groups and Users for all the different
characteristics (Fairshare factors, Max number of Jobs, Max
number of CPUs, etc)

Job Priorities based on the CPU*Time utilization of each user

Important Note: To activate fairsharing in SLURM you need to add the
Priority/multifactorPriority/multifactor parameter in slurm.conf along with the different
parameters for the particular factors that are needed for the site

59© Bull, 2014

Scheduling – Backfill

Holes can be filled if previous jobs order is not changed

FIFO Scheduler Backfill Scheduler

60© Bull, 2014

Scheduling Policies

Scheduler Plugin Type
Sched/builtin Default FIFO
Sched/hold variation on builtin; new jobs are held if

/etc/slurm.hold file exists.

Sched/backfill schedule lower priority jobs as long
as they don’t delay a waiting higher priority job.
 Increases utilization of the cluster.
 Requires declaration of max execution time of lower

priority jobs.
 --time on ‘srun’,
 DefaultTime or MaxTime on Partition
 MaxWall from accounting association

#slurm.conf file#slurm.conf file
SchedulerType=sched/backfillSchedulerType=sched/backfill
SchedulerParameters=defer,bf_interval=60SchedulerParameters=defer,bf_interval=60
FastSchedule=1FastSchedule=1

61© Bull, 2014

Scheduling Configuration Tips – Backfill

Important parameter for backfill to take effect is the
Walltime of the job (Max time allowed for the job to be completed).

– Through command line option (--time=<Minutes>)
– Partitions or QOS can be declared with Walltime

parameter and jobs submitted to these partitions inherit
automatically those parameters.

Configuration of scheduler backfill in slurm.conf
Scheduler Parameters= bf_interval=#, bf_max_job_user=#,
 bf_resolution=#,bf_window=#,max_job_bf=#

62© Bull, 2014

Scheduling - Preemption

Preemption policy allows higher priority jobs to execute without
waiting upon the cluster resources by taking the place of the lower
priority jobs

63© Bull, 2014

Preemption Policies

Preempt Modes

Cancel preempted job is cancelled.
Checkpoint preempted job is checkpointed if possible, or cancelled.
Gang enables time slicing of jobs on the same resource.
Requeue job is requeued as restarted at the beginning (only for sbatch).
Suspend job is suspended until the higher priority job ends (requires Gang).

#slurm.conf file#slurm.conf file
PreemptMode=SUSPENDPreemptMode=SUSPEND
PreemptType=preempt/qosPreemptType=preempt/qos

>sbatch -N3 ./sleep.sh 300
sbatch: Submitted batch job 489
>sbatch -p hiprio -N3 ./sleep.sh 20
sbatch: Submitted batch job 490
>squeue -Si
JOBID PARTITION NAME USER ST TIME NODES NODELIST
 489 lowpri sleep.sh user S 0:06 1 n[12-14]
 490 hipri sleep.sh user R 0:03 3 n[12-14]

64© Bull, 2014

SLURM scheduling / allocation procedures

Job Allocation:
Network Topology

Internal Node Topology
Distribution of Tasks on Nodes

Distribution of Tasks on Sockets
Binding of Tasks

Single Job Dispatch Job Execution

65© Bull, 2014

Network Topology Aware Placement

topology/tree SLURM Topology aware plugin. Best-Fit
selection of resources

 In fat-tree hierarchical topology: Bisection Bandwidth
Constraints need to be taken into account

#slurm.conf file#slurm.conf file
TopologyPlugin=topology/treeTopologyPlugin=topology/tree

66© Bull, 2014

Configuration (topology.conf)

topology.conf file needs to exist on all computing nodes
for network topology architecture description

topology.conf file# topology.conf file
SwitchName=Top SwitchName=Top
Switches=TS1,TS2,TS3,TS4,TS5,TS6,...Switches=TS1,TS2,TS3,TS4,TS5,TS6,...

SwitchName=TS1 nodes=curie[1-18]SwitchName=TS1 nodes=curie[1-18]
SwitchName=TS2 nodes=curie[19-37]SwitchName=TS2 nodes=curie[19-37]
SwitchName=TS3 nodes=curie[38-56]SwitchName=TS3 nodes=curie[38-56]
SwitchName=TS4 nodes=curie[57-75]SwitchName=TS4 nodes=curie[57-75]
........

67© Bull, 2014

Network Topology Aware Placement

In the slurm.conf the topology/tree plugin may be activated by
the admins to allow job placement according to network
topology constraints

In the submission commands the users may use the
 --switches=<count>[@<max-time>] parameter to indicate

how many switches their job would be ideal to execute upon:
 When a tree topology is used, this defines the maximum

count of switches desired for the job allocation and optionally
the maximum time to wait for that number of switches.

68© Bull, 2012

Internal node topology/CPUs allocation procedure

SLURM uses four basic steps to manage CPU
resources for a job/step:

 Step 1: Selection of Nodes
 Step 2: Allocation of CPUs from the selected Nodes
 Step 3: Distribution of Tasks to the selected Nodes
 Step 4: Optional Distribution and Binding of Tasks to

CPUs within a Node

● SLURM provides a rich set of configuration and command line options to
 control each step
● Many options influence more than one step
● Interactions between options can be complex and difficult to predict
● Users may be constrained by Administrator's configuration choices

69© Bull, 2012

Configuration options in slurm.conf

 Nodename: Defines a node and its characteristics. This includes the
layout of sockets, cores, threads and the number of logical CPUs on the
node.
 FastSchedule: Allows administrators to define “virtual” nodes with
different layout of sockets, cores and threads and logical CPUs than the
physical nodes in the cluster.
 PartitionName: Defines a partition and its characteristics. This includes
the set of nodes in the partition.

Notable Options for Step 1: Selection of Nodes

Command line options on srun/salloc/sbatch commands

 --partition, --nodelist: Specifies the set of nodes from which the
selection is made
 -N, --nodes: Specifies the minimum/maximum number of nodes to be
selected
 -B, --sockets-per-node, --cores-per-socket, --threads-per-core:
Limits node selection to nodes with the specified characteristics

70© Bull, 2012

Configuration options in slurm.conf:

 SelectType:
 SelectType=select/linear: Restricts allocation to whole nodes
 SelectType=select/cons_res: Allows allocation of individual
sockets, cores or threads as consumable resources

 SelectTypeParameters: For select/cons_res, specifies the consumable
resource type and default allocation method within nodes

Notable Options for Step 2: Allocation of CPUs from Selected Nodes

Command line options on srun/salloc/sbatch:

 -n, --ntasks: Specifies the number of tasks. This may affect the number
of CPUs allocated to the job/step
 -c, --cpus-per-task: Specifies the number of CPUs per task. This may
affect the number of CPUs allocated to the job/step

71© Bull, 2012

Configuration options in slurm.conf:

 MaxTasksPerNode: Specifies maximum number of tasks per
node

Notable Options for Step 3: Distribution of Tasks to Nodes

Command Line options on srun/salloc/sbatch:

 -m, --distribution: Controls the order in which tasks are
distributed to nodes.

72© Bull, 2012

Configuration options in slurm.conf:

 TaskPlugin:
 TaskPlugin=task/none: Disables this step.
 TaskPlugin=task/affinity: Enables task binding using the task
affinity plugin.
 TaskPlugin=task/cgroup: Enables task binding using the new
task cgroup plugin.

 TaskPluginParam: For task/affinity, specifies the binding unit
(sockets, cores or threads) and binding method (sched_setaffinity
or cpusets)

Notable Options for Step 4: Optional Distribution & Binding

Command Line options on srun/salloc/sbatch:

 --cpu_bind: Controls many aspects of task affinity
 -m, --distribution: Controls the order in which tasks are
distributed to allocated CPUs on a node for binding

73© Bull, 2012

Allocation & Distribution Methods

SLURM uses two default methods for allocating and
distributing individual CPUs from a set of resources

● block method: Consume all eligible CPUs consecutively
from a single resource before using the next resource in the set

● cyclic method: Consume eligible CPUs from each resource
in the set consecutively in a round-robin fashion

The following slides illustrate the default method used by
SLURM for each step.

74© Bull, 2012

Allocation of Resources

Different ways of selecting resources in SLURM:

Cyclic method (Balance between nodes / Round Robin)

Block method (Minimization of fragmentation)

● Cyclic

[bench@wardlaw0 ~]$ srun -n10 -N2 –exclusive /bin/hostname

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw66

wardlaw66

wardlaw66

wardlaw66

wardlaw66

● Block

[bench@wardlaw0 ~]$ srun -n10 -N2 /bin/hostname

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw67

wardlaw66

75© Bull, 2014

Generic Resources (Allocation of GPUs, MIC, etc)

Generic Resources (GRES) are resources associated with a specific node that can
be allocated to jobs and steps. The most obvious example of GRES use would be
GPUs. GRES are identified by a specific name and use an optional plugin to
provide device-specific support.

SLURM supports no generic resourses in the default configuration. One must
explicitly specify which resources are to be managed in the slurm.conf
configuration file. The configuration parameters of interest are:

GresTypes a comma delimited list of generic resources to be managed
(e.g. GresTypes=gpu,nic). This name may be that of an optional plugin
providing additional control over the resources.
Gres the specific generic resource and their count associated with each
node (e.g. NodeName=linux[0-999] Gres=gpu:8,nic:2) specified on all
nodes and SLURM will track the assignment of each specific resource on
each node. Otherwise SLURM will only track a count of allocated
resources rather than the state of each individual device file.

76© Bull, 2014

Network Topology Aware Placement

For configuration the new file gres.conf needs to exist on each compute node
with gres resources

Configure support for our four GPUs
Name=gpu File=/dev/nvidia0 CPUs=0,1
Name=gpu File=/dev/nvidia1 CPUs=0,1
Name=gpu File=/dev/nvidia2 CPUs=2,3
Name=gpu File=/dev/nvidia3 CPUs=2,3

For job execution the –gres option has to be used for to salloc, sbatch, and srun.

--gres=<list>Specifies a comma delimited list of generic consumableresources.
The format of each entry on the list is"name[:count]".

Generic Resources (Allocation of GPUs, MIC, etc)

77© Bull, 2014

Energy reduction techniques

Parameters for energy reduction techniques

Automatic node shut-down or other actions in case of
resources unutilization during particular time.

78© Bull, 2014

Energy reduction techniques Configuration

 SuspendTimeSuspendTime: Idle time to activate energy reduction techniques. A negative
number disables power saving mode. The default value is -1 (disabled).
 SuspendRateSuspendRate: # nodes added per minute. A value of zero results in no limits
being imposed. The default value is 60. Use this to prevent rapid drops in power
consumption.
 ResumeRate:ResumeRate: # nodes removed per minute. A value of zero results in no limits
being imposed. The default value is 300. Use this to prevent rapid increases in
power consumption.
 SuspendProgram:SuspendProgram: Program to be executed to place nodes into power saving
mode. The program executes as SlurmUser (as configured in slurm.conf). The
argument to the program will be the names of nodes to be placed into power
savings mode (using Slurm's hostlist expression format).
 ResumeProgram:ResumeProgram: This program may use the scontrol show node command to
insure that a node has booted and the slurmd daemon started.
 SuspendTimeout, ResumeTimeout, SuspendExcNodes,SuspendExcParts,
 BatchStartTimeout

79© Bull, 2014

Using different MPI libraries

OpenMPI
The system administrator must specify the range of ports to be reserved in
the slurm.conf file using the MpiParams parameter. For example:

MpiParams=ports=12000-12999
Launch tasks using the srun command plus the option --resv-ports.

 Alternately define the environment variable SLURM_RESV_PORT
srun –resv-ports -n <num_procs> a.out

If OpenMPI is configured with --with-pmi either pmi or pmi2 the OMPI jobs can be
launched directly using the srun command. This is the preferred way. If the pmi2
support is enabled then the command line options '--mpi=pmi2' has to be
specified on the srun command line.

srun --mpi=pmi2 -n <num_procs> a.out

Intel-MPI
Set the I_MPI_PMI_LIBRARY environment variable to point to the SLURM

 Process Management Interface (PMI) library:
export I_MPI_PMI_LIBRARY=/path/to/slurm/pmi/library/libpmi.so

Use the srun command to launch the MPI job:
srun -n <num_procs> a.out

80© Bull, 2014

Hands-On Exercises
Accounting/QOS/Limitations

1.Usage of sacctmgr command as root
2.Create an account for each user with sacctmgr create account
3.Update accounts including the limitations on maximum allowed jobs with
sacctmgr update account name=x set GrpJobs=y
4.Create a QOS with sacctmgr create qos

Exercise 9:Activate accounting using slurmdbd and mysql
-configure 3 users with different limitations on maximum allowed jobs

 -and 2 QOS with different priorities and walltimes

81© Bull, 2014

Hands-On Exercises
Scheduling

Exercise 10:Activate :
-backfill scheduling and consider high throughput workloads
-multifactor with priority on smaller jobs
-preemption on the QOS level

11) Create a backfill scenario where a small job will be running and
a large job will demand all the resources and then the following jobs will be
blocked and waiting for the large one to be executed. Set the walltime to your
Job in order to see backfilling take place.

12) Create a preemption scenario where a high priority job will kill a low
priority one and requeue it.

82© Bull, 2014

Allocation-Placement

Exercise 13:Activate :
-network topology aware scheduling
-internal node topology with possibilities to deal with
memory and cores as seperate resources
-CPU binding

83© Bull, 2014

Power Management

Exercise 14:Activate :
-power management in a way that when nodes are idle for more than
10min they are turned off
-node power monitoring
-experiment with real MPI application

84© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

85© Bull, 2014

Advantages: cgroups support for HPC

● To guarantee that every consumed resources is consumed the way it's
planned to be

- leveraging Linux latest features in terms of process control and
resource management
- Enabling node sharing

● While enhancing the connection with Linux systems

- Improve tasks isolation upon resources
- Improve efficiency of resource management activities (e.g., process
tracking, collection of accounting statistics)
- Improve robustness (e.g. more reliable cleanup of jobs)

● And simplifying the addition of new controlled resources and features

- prospective management of network and I/O as individual resources

86© Bull, 2014

Introduction to cgroups

Control Groups (cgroups) is a Linux kernel
mechanism (appeared in 2.6.24) to limit, isolate and
monitor resource usage (CPU, memory, disk I/O, etc.)
of groups of processes.

Features
•Resource Limiting (i.e. not to exceed a memory limit)
•Prioritization (i.e. groups may have larger share of CPU)
•Isolation (i.e. isolate GPUs for particular processes)
•Accounting (i.e. montior resource usage for processes)
•Control (i.e. suspending and resuming processes)

87© Bull, 2014

Cgroups subsystems

•cpuset – assigns tasks to individual CPUs and memory nodes in a cgroup
•cpu – schedules CPU access to cgroups
•cpuacct – reports CPU resource usage of tasks of a cgroup
•memory – set limits on memory use and reports memory usage for a cgroup
•devices – allows or denies access to devices (i.e. gpus) for tasks of a cgroup
•freezer – suspends and resumes tasks in a cgroup
•net_cls – tags network packets in a cgroup to allow network traffic priorities
•ns – namespace subsystem
•blkio – tracks I/O ownership, allowing control of access to block I/O resources

88© Bull, 2014

Cgroups functionality rules

●Cgroups are represented as virtual file systems
● Hierarchies are directories, created by mounting subsystems, using the

mount command; subsystem names specified as mount options
● Subsystem parameters are represented as files in each hierarchy with

values that apply only to that cgroup
●Interaction with cgroups take place by manipulating directories and
files in the cgroup virtual file system using standard shell commands
and system calls (mkdir, mount, echo, etc)

● tasks file in each cgroup directory lists the tasks (pids) in that cgroup
● Tasks are automatically removed from a cgroup when they terminate or

are added to a different cgroup in the same hierarchy
● Each task is present in only one cgroup in each hierarchy

●Cgroups have a mechanism for automatic removal of abandoned
cgroups (release_agent)

89© Bull, 2014

Cgroups subsystems parameters

cpuset subsystem
cpuset.cpus: defines the set of cpus that the tasks in the cgroup are allowed to

execute on
cpuset.mems: defines the set of memory zones that the tasks in the cgroup are

allowed to use

memory subsystem
memory.limit_in_bytes: defines the memory limit for the tasks in the cgroup
memory.swappiness: controls kernel reclamation of memory from the tasks in the

cgroup (swap priority)

freezer subsystem
freezer.state: controls whether tasks in the cgroup are active (runnable) or

suspended

devices subsystem
devices_allow: specifies devices to which tasks in a cgroup have acces

90© Bull, 2014

Cgroups functionality example

/cgroup

/memory

(memory subsystem
 mount point & hierarchy)

/cpuset

(cpuset subsystem
 mount point & hierarchy)

/students

cpuset.cpus=0-2
cpuset.mems=0-1
 tasks=1,2,3,4,5

/profs

cpuset.cpus=3-7
cpuset.mems=0-1

 tasks=6,7,8

/students

memory.limit=1G
tasks=1,2,3,4,5

/profs

memory.limit=4G
tasks=6,7,8

91© Bull, 2014

Cgroups functionality example

[root@mordor:~]# mkdir /cgroup

[root@mordor:~]# mkdir /cgroup/cpuset

[root@mordor:~]# mount -t cgroup -o cpuset none /cgroup/cpuset

[root@mordor:~]# ls /cgroup/cpuset/

cpuset.cpus cpuset.mems tasks notify_on_release release_agent

[root@mordor:~]# mkdir /cgroup/cpuset/students

[root@mordor:~]# mkdir /cgroup/cpuset/profs

[root@mordor:~]# echo 0-2 > /cgroup/cpuset/students/cpuset.cpus

[root@mordor:~]# echo 0 > /cgroup/cpuset/students/cpuset.mems

[root@mordor:~]# echo $PIDS_st > /cgroup/cpuset/students/tasks

[root@mordor:~]# echo 3-7 > /cgroup/cpuset/profs/cpuset.cpus

[root@mordor:~]# echo 1 > /cgroup/cpuset/profs/cpuset.mems

[root@mordor:~]# echo $PIDS_pr > /cgroup/cpuset/profs/tasks

mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor
mailto:root@mordor

92© Bull, 2014

Process Tracking with Cgroups

Track job processes using the freezer subsystem

• Every spawned process is tracked
- Automatic inheritance of parent's cgroup

- No way to escape the container

• Every processes can be frozen
- Using the Thawed|Frozen state of the subsystem

- No way to avoid the freeze action

93© Bull, 2014

Cgroup Proctrack plugin: freezer subsystem

[root@leaf ~]# cat /cgroup/freezer/uid_500/job_53/step_0/freezer.state
THAWED
[root@leaf ~]# scontrol suspend 53
[root@leaf ~]# ps ef f | tail n 2
root 15144 1 0 17:10 ? Sl 0:00 slurmstepd: [53.0]
mat 15147 15144 0 17:10 ? T 0:00 _ /bin/sleep 300
[root@leaf ~]# cat /cgroup/freezer/uid_500/job_53/step_0/freezer.state
FREEZING
[root@leaf ~]# scontrol resume 53
[root@leaf ~]# ps ef f | tail n 2
root 15144 1 0 17:10 ? Sl 0:00 slurmstepd: [53.0]
mat 15147 15144 0 17:10 ? S 0:00 _ /bin/sleep 300
[root@leaf ~]# cat /cgroup/freezer/uid_500/job_53/step_0/freezer.state
THAWED
[root@leaf ~]#

[mat@leaf slurm]$ srun sleep 300

94© Bull, 2014

Task confinement for allocated resources

Constrain jobs tasks to the allocated resources
• 3 independant layers of managed resources using 3

subsystems
– Cores (cpuset), Memory (memory),

GRES (devices)
● Every spawned process is tracked

- Automatic inheritance of parent's cgroup

- No escape, no way to use additional resources,

• Each layer has its own additional parameters
• More resources could be added in the future

GPU

MultiCore Node CPU

NIC

Memory

I/O

HPC Cluster Node
CPU

CPUCPU

95© Bull, 2014

Task confinement for cpus

Constrain jobs tasks to the allocated cores
• Configurable feature

- ConstrainCores=yes|no

• Use step's allocated cores with “exclusive steps”
- Otherwise, let steps use job's allocated cores

• Basic affinity management as a configurable sub-feature
- TaskAffinity=yes|no in cgroup.conf (rely on HWLOC)

- Automatic block and cyclic distribution of tasks
GPU

MultiCore Node

CPU

NIC

Memory

I/O

HPC Cluster Node

CPUCPUCPU

96© Bull, 2014

Cgroup Task plugin : cpuset subsystem

 [root@leaf ~]# egrep "Cores|Affinity" /etc/slurm/cgroup.conf
ConstrainCores=yes
TaskAffinity=yes
[root@leaf ~]# tail f /var/log/slurmd.leaf10.log |grep task/cgroup
[20110916T17:24:59] [55.0] task/cgroup: now constraining jobs allocated
cores

[20110916T17:24:59] [55.0] task/cgroup: loaded
[20110916T17:24:59] [55.0] task/cgroup: job abstract cores are '031'
[20110916T17:24:59] [55.0] task/cgroup: step abstract cores are '031'
[20110916T17:24:59] [55.0] task/cgroup: job physical cores are '031'
[20110916T17:24:59] [55.0] task/cgroup: step physical cores are '031'
[20110916T17:24:59] [55.0] task/cgroup: task[0] is requesting no affinity

[mat@leaf slurm]$ salloc exclusive srun n1 cpu_bind=none sleep
3000
salloc: Granted job allocation 55

97© Bull, 2014

Cgroup Task plugin : cpuset subsystem

 [root@leaf ~]# egrep "Cores|Affinity" /etc/slurm/cgroup.conf
ConstrainCores=yes
TaskAffinity=yes
[root@leaf ~]# tail f /var/log/slurmd.leaf10.log |grep task/cgroup
[20110916T17:31:17] [57.0] task/cgroup: now constraining jobs allocated cores
[20110916T17:31:17] [57.0] task/cgroup: loaded
[20110916T17:31:17] [57.0] task/cgroup: job abstract cores are '031'
[20110916T17:31:17] [57.0] task/cgroup: step abstract cores are '031'
[20110916T17:31:17] [57.0] task/cgroup: job physical cores are '031'
[20110916T17:31:17] [57.0] task/cgroup: step physical cores are '031'
[20110916T17:31:17] [57.0] task/cgroup: task[0] is requesting core level binding
[20110916T17:31:17] [57.0] task/cgroup: task[0] using Core granularity
[20110916T17:31:17] [57.0] task/cgroup: task[0] taskset '0x00000001' is set

[mat@leaf slurm]$ salloc exclusive srun n1 cpu_bind=cores sleep 3000
salloc: Granted job allocation 57

98© Bull, 2014

Cgroup Task plugin : cpuset subsystem

 [root@leaf ~]# egrep "Cores|Affinity" /etc/slurm/cgroup.conf
ConstrainCores=yes
TaskAffinity=yes
[root@leaf ~]# tail f /var/log/slurmd.leaf10.log |grep task/cgroup
[20110916T17:33:31] [58.0] task/cgroup: now constraining jobs allocated cores
[20110916T17:33:31] [58.0] task/cgroup: loaded
[20110916T17:33:31] [58.0] task/cgroup: job abstract cores are '031'
[20110916T17:33:31] [58.0] task/cgroup: step abstract cores are '031'
[20110916T17:33:31] [58.0] task/cgroup: job physical cores are '031'
[20110916T17:33:31] [58.0] task/cgroup: step physical cores are '031'
[20110916T17:33:31] [58.0] task/cgroup: task[0] is requesting socket level binding
[20110916T17:33:31] [58.0] task/cgroup: task[0] using Socket granularity
[20110916T17:33:31] [58.0] task/cgroup: task[0] taskset '0x00000003' is set

[mat@leaf slurm]$ salloc exclusive srun n1 cpu_bind=socket sleep 3000
salloc: Granted job allocation 58

99© Bull, 2014

Cgroup Task plugin : cpuset subsystem

 [root@leaf ~]# egrep "Cores|Affinity" /etc/slurm/cgroup.conf
ConstrainCores=yes
TaskAffinity=yes
[root@leaf ~]# tail f /var/log/slurmd.leaf10.log |grep task/cgroup[20110916T17:36:18] [60.0]
task/cgroup: now constraining jobs allocated cores

[20110916T17:36:18] [60.0] task/cgroup: loaded
[20110916T17:36:18] [60.0] task/cgroup: job abstract cores are '031'
[20110916T17:36:18] [60.0] task/cgroup: step abstract cores are '031'
[20110916T17:36:18] [60.0] task/cgroup: job physical cores are '031'
[20110916T17:36:18] [60.0] task/cgroup: step physical cores are '031'
[20110916T17:36:18] [60.0] task/cgroup: task[0] is requesting socket level binding
[20110916T17:36:18] [60.0] task/cgroup: task[1] is requesting socket level binding
[20110916T17:36:18] [60.0] task/cgroup: task[1] using Core granularity
[20110916T17:36:18] [60.0] task/cgroup: task[1] higher level Socket found
[20110916T17:36:18] [60.0] task/cgroup: task[1] taskset '0x00000003' is set
[20110916T17:36:18] [60.0] task/cgroup: task[0] using Core granularity
[20110916T17:36:18] [60.0] task/cgroup: task[0] higher level Socket found
[20110916T17:36:18] [60.0] task/cgroup: task[0] taskset '0x00000003' is set

[mat@leaf slurm]$ salloc exclusive srun n2 cpu_bind=socket sleep 3000
salloc: Granted job allocation 60

100© Bull, 2014

Task confinement for memory :
memory subsystem

Constrain jobs tasks to the allocated amount of
memory

• Configurable feature
- ConstrainRAMSpace=yes|no

- ConstrainSwapSpace=yes|no

• Use step's allocated amount of memory with “exclusive
steps”
- Else, let steps use job's allocated amount

• Both RSS and swap are monitored
• Trigger OOM killer on the cgroup's tasks when reaching

limits
• Tolerant mechanism

- AllowedRAMSpace , AllowedSwapSpace percents

GPU

MultiCore Node

CPU CPU CPU CPU

NIC

Memory

I/O

HPC Cluster Node

101© Bull, 2014

Cgroup Task plugin : memory subsystem

[root@leaf ~]# tail f /var/log/slurmd.leaf10.log |grep task/cgroup
[20110916T17:55:20] [67.0] task/cgroup: now constraining jobs allocated memory
[20110916T17:55:20] [67.0] task/cgroup: loaded
[20110916T17:55:20] [67.0] task/cgroup: job mem.limit=3520MB memsw.limit=3840MB
[20110916T17:55:20] [67.0] task/cgroup: step mem.limit=3520MB memsw.limit=3840MB

[mat@leaf slurm]$ salloc exclusive mempercpu 100 srun n1 sleep 3000
salloc: Granted job allocation 67

[mat@leaf slurm]$ salloc exclusive mempercpu 100 srun –
exclusive n1 sleep 3000

salloc: Granted job allocation 68

[root@leaf ~]# tail f /var/log/slurmd.leaf10.log |grep task/cgroup
[20110916T17:57:31] [68.0] task/cgroup: now constraining jobs allocated memory
[20110916T17:57:31] [68.0] task/cgroup: loaded
[20110916T17:57:31] [68.0] task/cgroup: job mem.limit=3520MB memsw.limit=3840MB
[20110916T17:57:31] [68.0] task/cgroup: step mem.limit=110MB memsw.limit=120MB

102© Bull, 2014

Cgroup Task plugin : memory subsystem
OOM killer usage

[mat@leaf slurm]$ salloc exclusive mempercpu 100 srun n1 sleep
3000

salloc: Granted job allocation 67

slurmd[berlin27]: Step 268.0 exceeded 1310720 KB
memory limit, being killed

srun: Exceeded job memory limit

srun: Job step aborted: Waiting up to 2 seconds for job step
to finish.

slurmd[berlin27]: *** STEP 268.0 KILLED AT 201203
31T15:50:36 WITH SIGNAL 9 ***

srun: error: berlin27: tasks 0,1: Killed

103© Bull, 2014

Tasks confinement for devices:
devices subsystem

Constrain jobs tasks to the allocated system
devices

●Based on the GRES plugin for generic resources
allocation (NIC, GPUs, etc) and built upon the cgroup
task plugin

● Each task is allowed to access to a number of devices by
default

● Only the tasks that have granted allocation on the GRES
devices will be allowed to have access on them.

● Tasks with no granted allocation upon GRES devices will
not be able to use them.

GPU

MultiCore Node

CPU CPU CPU CPU

NIC

Memory

I/O

HPC Cluster Node

104© Bull, 2014

Cgroup Task plugin : devices subsystem

Cgroup Devices Configuration Example

[root@mordor cgroup]# egrep "Devices" /etc/slurm/cgroup.conf[root@mordor cgroup]# egrep "Devices" /etc/slurm/cgroup.conf
ConstrainDevices=yesConstrainDevices=yes
AllowedDevicesFile="/etc/slurm/allowed_devices.conf"AllowedDevicesFile="/etc/slurm/allowed_devices.conf"

[root@mordor cgroup]# cat /etc/slurm/allowed_devices.conf [root@mordor cgroup]# cat /etc/slurm/allowed_devices.conf
/dev/sda*/dev/sda*
/dev/null/dev/null
/dev/zero/dev/zero
/dev/urandom/dev/urandom
/dev/cpu/*/*/dev/cpu/*/*

105© Bull, 2014

Cgroup Task plugin : devices subsystem

Cgroup Devices Logic as implemented in task plugin
 1) Initialization phase (information collection gres.conf file, major,

minor, etc)
2) Allow all devices that should be allowed by default
(allowed_devices.conf)
3) Lookup which gres devices are allocated for the job
- Write allowed gres devices to devices.allow file

- Write denied gres devices to devices.deny file

4) Execute 2 and 3 for job and steps tasks (different hierarchy level
in cgroups)

106© Bull, 2014

Cgroups devices subsystem : Usage Example

[gohn@cuzco0]$ cat gpu_test.sh
#!/bin/sh
sleep 10
echo 0 > /dev/nvidia0
echo 0 > /dev/nvidia1

[root@cuzco51]# cat /etc/slurm/allowed_devices.conf [root@cuzco51]# cat /etc/slurm/allowed_devices.conf
/dev/sda*/dev/sda*
/dev/null/dev/null

[root@mordor cgroup]# egrep "Gres" /etc/slurm/slurm.conf
GresTypes=gpu
NodeName=cuzco[57,61] Gres=gpu:2 Procs=8 Sockets=2 CoresPerSocket=4

107© Bull, 2014

[gohn@cuzco0]$ srun n1 –gres=gpu:1 o output ./gpu_test.sh

[root@cuzco51 ~]# tail f /var/log/slurmd.cuzco51.log
[20110920T03:10:02] [22.0] task/cgroup: manage devices jor job '22'
[20110920T03:10:02] [22.0] device : /dev/nvidia0 major 195, minor 0
[20110920T03:10:02] [22.0] device : /dev/nvidia1 major 195, minor 1
[20110920T03:10:02] [22.0] device : /dev/sda2 major 8, minor 2
[20110920T03:10:02] [22.0] device : /dev/sda1 major 8, minor 1
[20110920T03:10:02] [22.0] device : /dev/sda major 8, minor 0
[20110920T03:10:02] [22.0] device : /dev/null major 1, minor 3
[20110920T03:10:02] [22.0] Default access allowed to device b 8:2 rwm
[20110920T03:10:02] [22.0] parameter 'devices.allow' set to 'b 8:2 rwm' for '/cgroup/devices/uid_50071/job_22/step_0'
[20110920T03:10:02] [22.0] Default access allowed to device b 8:1 rwm
[20110920T03:10:02] [22.0] parameter 'devices.allow' set to 'b 8:1 rwm' for '/cgroup/devices/uid_50071/job_22/step_0'
[20110920T03:10:02] [22.0] Default access allowed to device b 8:0 rwm
[20110920T03:10:02] [22.0] parameter 'devices.allow' set to 'b 8:0 rwm' for '/cgroup/devices/uid_50071/job_22/step_0'
[20110920T03:10:02] [22.0] Default access allowed to device c 1:3 rwm
[20110920T03:10:02] [22.0] parameter 'devices.allow' set to 'c 1:3 rwm' for '/cgroup/devices/uid_50071/job_22/step_0'
[20110920T03:10:02] [22.0] Allowing access to device c 195:0 rwm
[20110920T03:10:02] [22.0] parameter 'devices.allow' set to 'c 195:0 rwm' for '/cgroup/devices/uid_50071/job_22/step_0'
[20110920T03:10:02] [22.0] Not allowing access to device c 195:1 rwm
[20110920T03:10:02] [22.0] parameter 'devices.deny' set to 'c 195:1 rwm' for '/cgroup/devices/uid_50071/job_22/step_0'

Cgroups devices subsystem : Usage Example

108© Bull, 2014

[root@cuzco51 ~]# cat /cgroup/devices/uid_50071/job_22/step_0/tasks
4875
4879
4882
[root@cuzco51 ~]# cat /cgroup/devices/uid_50071/job_22/step_0/devices.list
b 8:2 rwm
b 8:1 rwm
b 8:0 rwm
c 1:3 rwm
c 195:0 rwm

Cgroups devices subsystem : Usage Example

[gohn@cuzco0]$ cat output
/home/GPU/./gputest.sh: line 4: echo: write error: Invalid argument
/home/GPU/./gputest.sh: line 5: /dev/nvidia1: Operation not

permitted

110© Bull, 2014

Monitoring Resource Usage:
cpuacct and memory subsystems

Monitoring cpu usage with cpuacct subsystem
and memory usage with memory subsystem

• Implemented as a jobacct_gather plugin for SLURM
• Collects information concerning CPU time and Memory

RSS consumed for each task of the cgroup
• Values reported as a new job characteristics in the

accounting database of SLURM
• Values can be used for billing purposes
• Monitor per job energy consumption (not through

cgroups)

GPU

MultiCore Node

CPU

NIC

Memory

I/O

HPC Cluster Node

CPUCPUCPU

111© Bull, 2014

Monitoring Resources:
cpuacct -memory subsystems

[gohn@cuzco0]$ srun n32 ./malloc
[gohn@cuzco0]$ sacct j 167

 JobID JobName Partition MaxRSS AveRSS MaxPages AvePages
 MinCPU AveCPU Elapsed State Ntasks AllocCPUs ExitCode

------------ ---------- -------------- -------------- ---------- ---------- ---------- ----------

 167.0 malloc shared 61311K 57221K 239.24G 99893120K
00:03.000 00:03.000 00:01:10 COMPLETED 32 32 0.0

112© Bull, 2014

Cgroup Task plugin : devices subsystem

Cgroup Devices Logic as implemented in task plugin
 1) Initialization phase (information collection gres.conf file, major,

minor, etc)
2) Allow all devices that should be allowed by default
(allowed_devices.conf)
3) Lookup which gres devices are allocated for the job
- Write allowed gres devices to devices.allow file

- Write denied gres devices to devices.deny file

4) Execute 2 and 3 for job and steps tasks (different hierarchy level
in cgroups)

mailto:gohn@cuzco0

Energy accounting and control

114© Bull, 2012

Summary of the energy accounting and control features

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

115© Bull, 2012

Summary of the energy accounting and control features

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

How this takes place:
● Dedicated Plugins for Support of in-band collection of energy/power

data (IPMI / RAPL)

● Dedicated Plugins for Support of out-of-band collection of
energy/power data (RRD databases)

● Power data job profiling with HDF5 file format

● SLURM Internal power-to-energy and energy-to-power calculations

116© Bull, 2012

Summary of the energy accounting and control features

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

How this takes place:
● Dedicated Plugins for Support of in-band collection of energy/power

data (IPMI / RAPL)

● Dedicated Plugins for Support of out-of-band collection of
energy/power data (RRD databases)

● Power data job profiling with HDF5 file format

● SLURM Internal power-to-energy and energy-to-power calculations

●Overhead: In-band Collection
●Precision: of the measurements and internal
calculations
●Scalability: Out-of band Collection

117© Bull, 2012

In-band collection of power/energy data with IPMI

● IPMI is a message-based, hardware-level interface specification
(may operate in-band or out-of-band)

● Communication with the Baseboard Management Controller BMC
which is a specialized microcontroller embedded on the
motherboard of a computer

● SLURM support is based on the FreeIPMI API:
http://www.gnu.org/software/freeipmi/
– FreeIPMI includes a userspace driver that works on most

motherboards without any required driver.
– No thread interferes with application execution

● The data collected from IPMI are currently instantaneous measures in
Watts

● SLURM individual polling frequency (>=1sec)
– direct usage for power profiling
– but internal SLURM calculations for energy reporting per job

118© Bull, 2012

In-band collection of power/energy data with RAPL

● RAPL (Running Average Power Limit) are particular interfaces on
Intel Sandy Bridge processors (and later models) implemented to
provide a mechanism for keeping the processors in a particular
user-specified power envelope.

● Interfaces can estimate current energy usage based on a software
model driven by hardware performance counters, temperature
and leakage models

– Linux supports an ’MSR’ driver and access to the register can be
made through /dev/cpu/*/msr with priviledged read permissions

● The data collected from RAPL is energy consumption in Joules
(since the last boot of the machine)

● SLURM individual polling frequency (>=1sec)
– direct usage for energy reporting per job
– but internal SLURM calculations for power reporting

119© Bull, 2012

 Power Profiling

● Job profiling to periodically capture the task’s usage of various
resources like CPU, Memory, Lustre, Infiniband and Power per
node

● Resource Independent polling frequency configuration
● Based on hdf5 file format http://www.hdfgroup.org opensource

software library
– versatile data model that can represent very complex data

objects and a wide variety of metadata
– portable file format with no limit on the number or size of data

objects stored

● Profiling per node (one hdf5 file per job on each node)
● Aggregation on one hdf5 file per job (after job termination)
● Slurm built-in tools for extraction of hdf5 profiling data

120© Bull, 2012

Energy Accounting and Power Profiling
Architecture

121© Bull, 2014

acct_gather_energy Plugin - Overview

• One of a new family of acct_gather plugins that collect
resource usage data for accounting, profiling and
monitoring.

• Loaded by slurmd on each compute node.

• Called by jobacct_gather plugin to collect energy
consumption accounting data for jobs and steps.

• Called separately via RPC from the slurmctld background
thread to collect energy consumption data for nodes.

• Calls acct_gather_profile plugin to provide energy data
samples for profiling.

122© Bull, 2014

acct_gather_energy Plugin - Configuration

In slurm.conf
To configure plugin:

AcctGatherEnergyType=acct_gather_energy/rapl or
AcctGatherEnergyType=acct_gather_energy/ipmi

Frequency of node energy sampling controlled by:
AcctGatherNodeFreq=<seconds>
Default value is 0, which disables node energy sampling

Collection of energy accounting data for jobs/steps requires:
JobAcctGatherType=jobacct_gather/linux or
JobAcctGatherType=jobacct_gather/cgroup
Frequency of job accounting sampling controlled by:
JobAcctGatherFrequency=task=<seconds>
Default value is 30 seconds

In acct_gather.conf (new config file), for acct_gather_energy/ipmi only:
EnergyIPMIFrequency
EnergyIPMICalcAdjustment
EnergyIPMIPowerSensor
EnergyIPMIUsername
EnergyIPMIPassword

123© Bull, 2014

acct_gather_energy Plugin – Data Reporting

• For running jobs, energy accounting data is reported by sstat.

• If accounting database is configured, energy accounting data is
included in accounting records and reported by sacct and sreport.

• If acct_gather_profile plugin is configured, energy profiling data is
reported by the method specified by the profile plugin type.

• Energy consumption data for nodes is reported by scontrol show
node.

• Cumulative/total energy consumption is reported in units of joules.
• Instantaneous rate of energy consumption (power) is reported in

units of watts.

124© Bull, 2014

Out-of-band collection of power/energy data

● External Sensors Plugins to allow out-of-band monitoring of cluster
sensors

● Possibility to Capture energy usage and temperature of various
components (nodes, switches, rack-doors, etc)

● Framework generic but initial Support for RRD databases through
rrdtool API (for the collection of energy/temperature data)

– Plugin to be used with real wattmeters or out-of-band IPMI
capturing

● Power data captured used for per node power monitoring (scontrol
show node) and per job energy accounting (Slurm DB)

– direct usage for energy reporting per job
– but internal SLURM calculations for power reporting

125© Bull, 2014

External Sensors Plugin - Purpose

Plugin Name: ext_sensors

Purpose: To collect environmental-type data from external
sensors or sources for the following uses:

• Job/step accounting – Total energy consumption by a completed job or step
(no energy data while job/step is running).

• Hardware monitoring – Instantaneous and cumulative energy consumption
for nodes; instantaneous temperature of nodes.

• Future work will add additional types of environmental data, such as energy
and temperature data for network switches, cooling system, etc.
Environmental data may be used for resource management.

126© Bull, 2014

ext_sensors Plugin - Overview

• Loaded by slurmctld on management node.

• Collects energy accounting data for jobs and steps
independently of the acct_gather plugins.

• Called by slurmctld request handler when step starts.
• Called by slurmctld step manager when step completes.

• Since energy use by jobs/steps is measured only at
completion (i.e., no sampling), does not support energy
profiling or energy reporting for running jobs/steps (sstat).

• Called separately from the slurmctld background thread
to sample energy consumption and temperature data for
nodes.

127© Bull, 2014

ext_sensors Plugin – Data Reporting

• If accounting database is configured, energy data is included
in accounting records and reported by sacct and sreport.

• Energy consumption data for nodes is reported by scontrol
show node.

• Cumulative/total energy consumption reported in joules.
• Instantaneous energy consumption rate (power) for nodes

reported in watts.
• Node temperature reported in celsius.

128© Bull, 2014

ext_sensors Plugin - Versions

• One version of ExtSensorsType plugin currently supported:

• ext_sensors/rrd
External sensors data is collected using RRD. RRDtool is GNU-licensed
software that creates and manages a linear database used for sampling or
logging. The database is populated with energy data using out-of-band IPMI
collection.

• Plugin API is described in Slurm developer documentation:
• http://slurm.schedmd.com/ext_sensorsplugins.html

129© Bull, 2014

ext_sensors Plugin - Configuration

• In slurm.conf

To configure plugin:
ExtSensorsType=ext_sensors/rrd

Frequency of node energy sampling controlled by:
ExtSensorsFreq=<seconds>
Default value is 0, which disables node energy sampling

Collection of energy accounting data for jobs/steps requires:
JobAcctGatherType=jobacct_gather/linux or cgroup

• In ext_sensors.conf (new configuration file)

JobData=energy Specify the data types to be collected by the plugin for jobs/steps.

NodeData=[energy|temp]Specify the data types to be collected by the plugin for nodes.

SwitchData=energy Specify the data types to be collected by the plugin for switches.

ColdDoorData=temp Specify the data types to be collected by the plugin for cold doors.

MinWatt=<number> Minimum recorded power consumption, in watts.

MaxWatt=<number> Maximum recorded power consumption, in watts.

MinTemp=<number> Minimum recorded temperature, in celsius.

MaxTemp=<number> Maximum recorded temperature, in celsius.

EnergyRRA=<name> Energy RRA name.

TempRRA=<name> Temperature RRA name.

EnergyPathRRD=<path> Pathname of energy RRD file.

TempPathRRD=<path> Pathname of temperature RRD file.

130© Bull, 2014

Example 1 – Node energy monitoring using
acct_gather_energy/rapl

[sulu] (slurm) mnp> scontrol show config
...

AcctGatherEnergyType = acct_gather_energy/rapl
AcctGatherNodeFreq = 30 sec

...

[sulu] (slurm) mnp> scontrol show node n15

NodeName=n15 Arch=x86_64 CoresPerSocket=8
 CPUAlloc=0 CPUErr=0 CPUTot=32 CPULoad=0.00 Features=(null)

 Gres=(null)
 NodeAddr=drak.usrnd.lan NodeHostName=drak.usrnd.lan

 OS=Linux RealMemory=1 AllocMem=0 Sockets=4 Boards=1
 State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1

 BootTime=2013-08-28T09:35:47 SlurmdStartTime=2013-09-05T14:31:21
 CurrentWatts=121 LowestJoules=69447 ConsumedJoules=8726863

 ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

131© Bull, 2014

Example 2 – Energy accounting using
acct_gather_energy/rapl

[sulu] (slurm) mnp> scontrol show config
...
JobAcctGatherType = jobacct_gather/linux
JobAcctGatherFrequency = task=10
AcctGatherEnergyType = acct_gather_energy/rapl
AccountingStorageType = accounting_storage/slurmdb
...

[sulu] (slurm) mnp> srun test/memcputest 100 10000 &
[1] 20712
[sulu] (slurm) mnp> 100 Mb buffer allocated

[sulu] (slurm) mnp> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 120 drak-only memcpute slurm R 0:03 1 n15

[sulu] (slurm) mnp> sstat -j 120 -o ConsumedEnergy
ConsumedEnergy

 2149

[sulu] (slurm) mnp> sstat -j 120 -o ConsumedEnergy
ConsumedEnergy

 2452

[sulu] (slurm) mnp> sstat -j 120 -o ConsumedEnergy
ConsumedEnergy

 2720
[sulu] (slurm) mnp> Finished: j = 10001, c = 2990739969

[1]+ Done srun test/memcputest 100 10000

[sulu] (slurm) mnp> sacct -j 120 -o ConsumedEnergy
ConsumedEnergy

 3422

132© Bull, 2014

Example 3 – Energy accounting using
acct_gather_energy/ipmi

[root@cuzco108 bin]# scontrol show config
...
JobAcctGatherType = jobacct_gather/linux
JobAcctGatherFrequency = task=10
AcctGatherEnergyType = acct_gather_energy/ipmi
AccountingStorageType = accounting_storage/slurmdb
...

[root@cuzco108 bin]# cat /usr/local/slurm2.6/etc/acct_gather.conf

EnergyIPMIFrequency=10
#EnergyIPMICalcAdjustment=yes
EnergyIPMIPowerSensor=1280

[root@cuzco108 bin]# srun -w cuzco113 memcputest 100 10000 &
[1] 26138
[root@cuzco108 bin]# 100 Mb buffer allocated

[root@cuzco108 bin]# squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 101 exclusive memcpute root R 0:04 1 cuzco113
[root@cuzco108 bin]# sstat -j 101 -o ConsumedEnergy
ConsumedEnergy

 570

[root@cuzco108 bin]# sstat -j 101 -o ConsumedEnergy
ConsumedEnergy

 1.74K

133© Bull, 2014

Example 3 – continued

[root@cuzco108 bin]# Finished: j = 10001, c = 2990739969

[1]+ Done srun -w cuzco113 memcputest 100 10000
[root@cuzco108 bin]# sacct -j 101 -o ConsumedEnergy
ConsumedEnergy

 1.74K

134© Bull, 2014

Example 4 – Node energy and temperature monitoring
using ext_sensors/rrd

[root@cuzco0 ~]# scontrol show config
...
ExtSensorsType = ext_sensors/rrd
ExtSensorsFreq = 10 sec
...

[root@cuzco108 slurm]# cat /usr/local/slurm2.6/etc/ext_sensors.conf
#
External Sensors plugin configuration file
#

JobData=energy
NodeData=energy,temp

EnergyRRA=1
EnergyPathRRD=/BCM/data/metric/%n/Power_Consumption.rrd

TempRRA=1
TempPathRRD=/BCM/data/metric/%n/Temperature.rrd

MinWatt=4
MaxWatt=200

[root@cuzco0 ~]# scontrol show node cuzco109

NodeName=cuzco109 Arch=x86_64 CoresPerSocket=4
 CPUAlloc=0 CPUErr=0 CPUTot=8 CPULoad=0.00 Features=(null)
 Gres=(null)
 NodeAddr=cuzco109 NodeHostName=cuzco109
 OS=Linux RealMemory=24023 AllocMem=0 Sockets=2 Boards=1
 State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1
 BootTime=2013-09-03T17:39:00 SlurmdStartTime=2013-09-10T22:58:10
 CurrentWatts=0 LowestJoules=0 ConsumedJoules=0
 ExtSensorsJoules=4200 ExtSensorsWatts=105 ExtSensorsTemp=66

135© Bull, 2014

Example 5 – Energy accounting comparison using
ext_sensors/rrd and acct_gather_energy/ipmi

The accuracy/consistency of energy measurements may be inaccurate if the
run time of the job is short and allows for only a few samples. This effect
should be reduced for longer jobs.

The following example shows that the ext_sensors/rrd and
acct_gather_energy/ipmi plugins produce very similar energy consumption
results for a MPI benchmark job using 4 nodes and 32 CPUs, with a run time of
~9 minutes.

136© Bull, 2014

Example 5 – continued

acct_gather_energy/ipmi

[root@cuzco108 bin]# scontrol show config | grep acct_gather_energy

AcctGatherEnergyType = acct_gather_energy/ipmi

[root@cuzco108 bin]# srun -n32 --resv-ports ./cg.D.32 &

[root@cuzco108 bin]# squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 122 exclusive cg.D.32 root R 0:02 4 cuzco[109,111-113]

[root@cuzco108 bin]# sacct -o "JobID%5,JobName,AllocCPUS,NNodes%3,NodeList%22,State,Start,End,Elapsed,ConsumedEnergy%9"

JobID JobName AllocCPUS NNo NodeList State Start End Elapsed ConsumedE

----- ---------- ---------- --- ---------------------- ---------- ------------------- ------------------- ---------- ---------

 127 cg.D.32 32 4 cuzco[109,111-113] COMPLETED 2013-09-12T23:12:51 2013-09-12T23:22:03 00:09:12 490.60K

ext_sensors/rrd

[root@cuzco108 bin]# scontrol show config | grep ext_sensors

ExtSensorsType = ext_sensors/rrd

[root@cuzco108 bin]# srun -n32 --resv-ports ./cg.D.32 &

[root@cuzco108 bin]# squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 128 exclusive cg.D.32 root R 0:02 4 cuzco[109,111-113]

[root@cuzco108 bin]# sacct -o "JobID%5,JobName,AllocCPUS,NNodes%3,NodeList%22,State,Start,End,Elapsed,ConsumedEnergy%9"

JobID JobName AllocCPUS NNo NodeList State Start End Elapsed ConsumedE

----- ---------- ---------- --- ---------------------- ---------- ------------------- ------------------- ---------- ---------

 128 cg.D.32 32 4 cuzco[109,111-113] COMPLETED 2013-09-12T23:27:17 2013-09-12T23:36:33 00:09:16 498.67K

137© Bull, 2014

Profiling Configuration

• Configuration parameters
The profile plugin is enabled in the slurm.conf file, but is
internally configured in the acct_gather.conf file.

slurm.conf parameters
• AcctGatherProfileType=acct_gather_profile/hdf5 enables

the HDF5 Profile Plugin
• JobAcctGatherFrequency={energy=freq {,lustre=freq

{,network=freq , {task=freq}}}} sets default sample
frequencies for data types.

• One or more of the following plugins must also be
configured.

• AcctGatherEnergyType=acct_gather_energy/ipmi
• AcctGatherEnergyType=acct_gather_energy/rapl
• AcctGatherFilesystemType=acct_gather_filesystem/lustre
• AcctGatherInfinibandType=acct_gather_infiniband/ofed
• JobAcctGatherType=job_acct_gather/linux

138© Bull, 2014

Sample conf files

slurm.conf
DebugFlags=Profile

AcctGatherProfileType=acct_gather_profile/hdf5

JobAcctGatherType=jobacct_gather/linux

JobAcctGatherFrequency=energy=5,lustre=60,network=60,task=60
AcctGatherEnergyType=acct_gather_energy/ipmi

AcctGatherFilesystemType=acct_gather_filesystem/lustre
AcctGatherInfinibandType=acct_gather_infiniband/ofed

acct_gather.conf
Parameters for AcctGatherEnergy/ipmi plugin
EnergyIPMIFrequency=10
EnergyIPMICalcAdjustment=yes

Parameters for AcctGatherProfileType/hdf5 plugin
ProfileHDF5Dir=/app/Slurm/profile_data
Parameters for AcctGatherInfiniband/ofed plugin
InfinibandOFEDFrequency=4
InfinibandOFEDPort=1

139© Bull, 2014

Energy Data

• AcctGatherEnergyType=acct_gather_energy/ipmi is required in slurm.conf to collect
energy data.

• JobAcctGatherFrequeny=Energy=<freq> should be set in either slurm.conf or via –
acctg-freq command line option.

The IPMI energy plugin also needs the EnergyIPMIFrequency value set in the acct_gather.conf file. This sets the
rate at which the plugin samples the external sensors. This value should be the same as the energy=sec in either
JobAcctGatherFrequency or --acctg-freq.

Note that the IPMI and profile sampling is not synchronous. The profile sample simply takes the last available IPMI
sample value. If the profile energy sample is more frequent than the IPMI sample rate, the IPMI value will be
repeated. If the profile energy sample is greater than the IPMI rate, IPMI values will be lost.

Also note that smallest effective IPMI (EnergyIPMIFrequency) sample rate for 2013 era Intel processors is 3
seconds.

Note that Energy data is collected for the entire node so it is only meaningful for exclusive allocations.

• Each data sample in the Energy Time Series contains the following data items.

Date Time Time of day at which the data sample was taken.
This can be used to correlate activity with other sources such as logs.
Time Elapsed time since the beginning of the step.
PowerPower consumption during the interval.
CPU Frequency CPU Frequency at time of sample in kilohertz.

140© Bull, 2014

Lustre Data

• AcctGatherFilesystemType=acct_gather_filesystem/lustre is required in
Slurm.conf to collect lustre data.

• JobAcctGatherFrequeny=Lustre=<freq> should be set in either Slurm.conf
or via –acctg-freq command line option.

• Each data sample in the Lustre Time Series contains the following data

items.

Date Time Time of day at which the data sample was taken.

This can be used to correlate activity with other sources such as logs.
Time Elapsed time since the beginning of the step.
Reads Number of read operations.
MegabytesRead Number of megabytes read.
Writes Number of write operations.
MegabytesWrite Number of megabytes written.

141© Bull, 2014

Network (Infiniband) Data

• AcctGathertInfinibandType=acct_gather_infiniband/ofed is required in
Slurm.conf to collect Network data.

• JobAcctGatherFrequeny=Network=<freq> should be set in either
Slurm.conf or via –acctg-freq command line option.

• Each data sample in the Network Time Series contains the following data

items.

Date Time Time of day at which the data sample was taken.
This can be used to correlate activity with other sources such as logs.

Time Elapsed time since the beginning of the step.
PacketsIn Number of packets coming in.
MegabytesIn Number of megabytes coming in through the interface.
PacketsOut Number of packets going out.
MegabytesOut Number of megabytes going out through the interface.

142© Bull, 2014

Task Data

• JobAcctGatherType=jobacct_gather/linux is required in Slurm.conf to collect
task data

• JobAcctGatherFrequeny=Task=<freq> should be set in either
Slurm.conf or via –acctg-freq command line option.
The frequency should be set to at least 30 seconds for CPU utilization to be meaningful (since the
resolution of cpu time in linux is 1 second)

• Each data sample in the Task Time Series contains the following data items.

Date Time Time of day at which the data sample was taken.
This can be used to correlate activity with other sources such as logs.
Time Elapsed time since the beginning of the step.
CPUFrequency CPU Frequency at time of sample.
CPUTimeSeconds of CPU time used during the sample.
CPUUtilization CPU Utilization during the interval.
RSS Value of RSS at time of sample.
VMSize Value of VM Size at time of sample.
Pages Pages used in sample.
ReadMegabytes Number of megabytes read from local disk.
WriteMegabytes Number of megabytes written to local disk.

Emulation and Performance Evaluation

144© Bull, 2014

Activating emulation technique within SLURM

● Power and Energy consumption monitoring per node level.
● Energy consumption accounting per step/job on SLURM

DataBase
● Power profiling per step/job on the end of job
● Frequency Selection Mechanisms for user control of job

energy consumption

●Multiple slurmd technique can be used to experiment with larger
scales:

 - the idea is that multiple slurmd deamons use the same IP address but
different ports

 - all controller side plugins and mechanisms will function

 - ideal for scheduling, internal communications and scalability experiments

1. You need to run ./configure with –enable-multiple-slurmd parameter
(make, make install, etc)
2. Perform the necessary changes in the slurm.conf file similarly the
following example:

145© Bull, 2014

Activating emulation technique within SLURM

SlurmdPidFile=/usr/local/slurm-test/var/run/slurmd-%n.pid
SlurmdSpoolDir=/tmp/slurm-%n
SlurmdLogFile=/tmp/slurmd-%n.log
FastSchedule=2
PartitionName=exclusive Nodes=virtual[0-40] Default=YES MaxTime=INFINITE State=UP Priority=10
Shared=EXCLUSIVE
NodeName=DEFAULT Sockets=2 CoresPerSocket=8 ThreadsPerCore=1 RealMemory=21384 State=IDLE
NodeName=virtual0 NodeHostName=nazgul NodeAddr=127.0.0.1 Port=17000.

NodeName=virtual1 NodeHostName=nazgul NodeAddr=127.0.0.1 Port=17001
NodeName=virtual2 NodeHostName=nazgul NodeAddr=127.0.0.1 Port=17002
…...

3. You can start the slurmd deamons with:
– Either through a script such as:

 for i in {0..40}; do slurmd -N virtual$i; done

– Or by exporting: MULTIPLE_SLURMD="$(grep NodeHostName=$(hostname)
/etc/slurm.conf | cut -d ' ' -f 1 | cut -d'=' -f 2)"

on /etc/sysconfig/slurm and starting with /etc/init.d/slurm

146© Bull, 2014

Examples of performance evaluation with emulation

4096 emulated nodes upon 400 physical nodes

147© Bull, 2014

Examples of performance evaluation with emulation

16384 emulated nodes upon 400 physical nodes

148© Bull, 2012

 Introduction
 SLURM scalable and flexible RJMS
 Part 1: Basics

● Overview, Architecture, Configuration files, Partitions, Plugins,
Reservations

 Part 2: Advanced Configuration
● Accounting, Scheduling, Allocation, Network Topology Placement, Generic

Resources Management, Energy Reduction Techniques

 Part 3: Experts Configuration
● Isolation with cgroups, Power Management, Simulation and evaluation

Upcoming Features

149© Bull, 2014

New Slurm features under development

● Heterogeneous Environment

– Asymmetric Resources and MPMD model
– GPU Affinity

● Scalability

– Support of PMI-x project
– Messages Aggregation
– HDF5 Profiling Framework

● Power Management and Energy Efficiency

– Extension of Energy Accounting and
Power Profiling Framework

– Power-Capping logic in Job Scheduling
– Energetic Fairsharing

150© Bull, 2012

	Bullx MPI : From Terascale to Petascale
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	acct_gather_energy Plugin - Overview
	acct_gather_energy Plugin - Configuration
	acct_gather_energy Plugin – Data Reporting
	Slide 124
	External Sensors Plugin - Purpose
	ext_sensors Plugin - Overview
	ext_sensors Plugin – Data Reporting
	ext_sensors Plugin - Versions
	ext_sensors Plugin - Configuration
	Slide 130
	Example 2 – Energy accounting using acct_gather_energy/rapl
	Example 3 – Energy accounting using acct_gather_energy/ipmi
	Example 3 – continued
	Slide 134
	Slide 135
	Example 5 – continued
	Slide 137
	Sample conf files
	Energy Data
	Lustre Data
	Network (Infiniband) Data
	Task Data
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150

