
Carlos Jaime Barrios Hernandez, PhD.

EISI UIS

@carlosjaimebh

Concurrency and
Parallel
Programming

Concurrency and
Parallel
Programming

Concurrent and Parallel

La répétition sur la scène, 1874, Edgar Degas, Paris, Musée d'Orsay.

Plan
¤  The Traditional Way

¤  Design Spaces of Parallel Programming Recall

¤  Concurrent Programming

¤  Distributed Memory Vs. Shared Memory

¤  Design Models for Concurrent Algorithms

¤  Concurrent Algorithm Design Features and Forces

¤  Algorithm Structures

¤  Final Notes

Traditional Way

Designing and Building Parallel Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

Design Spaces of Parallel
Programming*

• Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
 Software Pattern Series, Addison-Wesley 2004

• Finding Concurrency (Structuring Problem to
expose exploitable concurrency)

• Algorithm Structure (Structure Algorithm to take
advantage of Concurrency)

• Supporting Structures (Interfaces between
Algorithms and Environments)

•  Implementation Mechanisms (Define
Programming Environments)

Concurrency and Parallelism

¤  A system is “concurrent” if it can
support two or more actions in
progress at the same time

¤  A system is “parallel” if it can
support two or more actions
executing simultaneously

Concurrent Programming is all about independent computations that the machine can
execute in any order.

Concurrent Programming General
Steps
1.  Analysis

¤  Identify Possible Concurrency

¤  Hotspot: Any partition of the code that has a significant amount of activity

¤  Time spent, Independence of the code…

2.  Design and Implementation
¤  Threading the algorithm

3.  Tests of Correctness
¤  Detecting and Fixing Threading Errors

4.  Tune of Performance
¤  Removing Performance Bottlenecks

¤  Logical errors, contention, synchronization errors, imbalance, excessive overhead

¤  Tuning Performance Problems in the code (tuning cycles)

Distributed Vs. Shared
Memory Programming
Common Features
¤  Redundant Work

¤  Dividing Work

¤  Sharing Data (Different Methods)

¤  Dynamic / Static Allocation of
Work
¤  Depending of the nature of

serial algorithm, resulting
concurrent version, number
of threads / processors

Only to Shared Memory
¤  Local Declarations and Thread-Local

Storage

¤  Memory Effects:
¤  False Sharing

¤  Communication in Memory

¤  Mutual Exclusion

¤  Producer / Consumer Model

¤  Reader / Writer Locks (In Distributed Memory
is Boss / Worker)

Tasks and Data
Decomposition

¤  Tasks Decomposition : Task Parallelism

¤  Data Decomposition: Data Parallelism

Concurrent Computation
from Serial Codes

¤  Sequential Consistency
Property: Getting the
same answer as the
serial code on the same
input data set,
comparing sequence of
execution in concurrent
solutions of the
concurrent algorithms.

Sequential Version

Parallel / Concurrent Version

What are the tasks and how are
defined?
¤  There should be at least as many tasks as there will be

threads (or cores)
¤  It is almost always better to have (many) more tasks than

threads.

¤  Granularity must be large enough to offset the overhead
that will be needed to manage the tasks and threads
¤  More computation: higher granularity (coarse-grained)

¤  Less Computation: lower granularity (fine-grained)

Granularity is the amount of computation done before
synchronization is needed

Task Granularity

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

Fine-grained decomposition Coarse-grained decomposition

Task Dependencies

Order Dependency Data Dependency

Enchantingly Parallel Code: Code without dependencies

How should you divide data
into chunks?

By individual elements By rows

By groups of columns By blocks

The Shape of the Chunk

¤  Data Decomposition have an additional dimension.

¤  It determines what the neighboring chunks are and how any exchange of data will be
handled during the course of the chunk computations.

2 Shared Borders

•  Regular shapes : Common Regular data organizations.
•  Irregular shapes: may be necessary due to the irregular

organizations of the data.

5 Shared Borders

How should you ensure that the tasks for each chunk
have access to all data required for update?

¤  Using Ghost Cells
¤  Using ghost cells to hold copied data from a neighboring

chunk.

Original split with ghost cells

Copying data into ghost cells

How are the data chunks
(and tasks) assigned to
threads?

¤  Data Chunks are associated with tasks and are assigned
to threads statically or dynamically

¤  Via Scheduling
¤  Static: when the amount of computations within tasks is

uniform and predictable

¤  Dynamic: to achieve a good balance due to variability in
the computation needed by chunk

¤  Require many (more) tasks than threads.

Concurrent Design
Models Features

¤  Efficiency
¤  Concurrent applications must run quickly and make good use of processing

resources.

¤  Simplicity
¤  Easier to understand, develop, debug, verify and maintain.

¤  Portability
¤  In terms of threading portability.

¤  Scalability
¤  It should be effective on a wide range of number of threads and cores, and

sizes of data sets.

Tasks and Domain
Decomposition Patterns

¤  Task Decomposition Pattern
¤  Understand the computationally intensive parts of the problem.
¤  Finding Tasks (as much…)

¤  Actions that are carried out to solve the problem
¤  Actions are distinct and relatively independent.

¤  Data Decomposition Pattern
¤  Data decomposition implied by tasks.
¤  Finding Domains:

¤  Most computationally intensive part of the problem is
organized around the manipulation of large data structure.

¤  Similar operators are being applied to different parts of the
data structure.

¤  In shared memory programming environments, data
decomposition will be implied by task decomposition.

Group and Order Tasks
Patterns

¤  Group Tasks Pattern
¤  Simplify the problem dependency analysis

¤  If a group of tasks must work together on a data shared
structure

¤  If a group of tasks are dependent

¤  Order Tasks Pattern
¤  Find and correctly account for dependencies resulting from

constraints on the order of execution of a collection of tasks.
¤  Temporal dependencies
¤  Specific Requirements of the tasks

Data Sharing Pattern

¤  Data decomposition might define some data that must be
shared among the tasks.

¤  Data dependencies can also occur when one task needs
access to some portions of the another task’s local data.
¤  Read Only
¤  Effectively Local (Accessed by one of the tasks)
¤  Read Write

¤  Accumulative
¤  Multiple read / Single Write

Design Evaluation Pattern

¤ Production of analysis and decomposition:
¤  Task decomposition to identify concurrency

¤  Data decomposition to indentify data local to each task

¤  Group of task and order of groups to satisfy temporal
constraints

¤  Dependencies among tasks

¤ Design Evaluation
¤  Suitability for the target platform

¤  Design Quality

¤  Preparation for the next phase of the design

Not Parallelizable Jobs,
Tasks and Algorithms

¤  Algorithms with state

¤  Recurrences

¤  Induction Variables

¤  Reductions

¤  Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering. By Fred
Brooks. Ed Addison-Wesley Professional, 1995

Algorithm Structures

¤  Organizing by Tasks
¤  Task Parallelism
¤  Divide and Conquer

¤  Organizing by Data Decomposition
¤  Geometric Decomposition
¤  Recursive Data

¤  Organizing by Flow of Data
¤  Pipeline
¤  Event-Based Coordination

Algorithm Structure
Decision Tree (Major Organizing
Principle)

Start

Organize By Tasks

Linear

Task
Parallelism

Recursive

Divide and Conquer

Organize By Data Decomposition

Linear

Geometric
Decomposition

Recursive

Recursive Data

Organize By Flow of Data

Linear

Pipeline

Recursive

Event-Based
Coordination

Divide and Conquer
Strategy

split

split split

Solve Solve Solve Solve

Merge

Merge Merge

Divide and Conquer
Parallel Strategy

Each dashed-line box represents a task

Recursive Data Strategy

¤  Involves an operation on a recursive data
structure that appears to require sequential
processing:
¤  Lists

¤  Trees
¤  Graphs

¤  Recursive Data structure is completely
decomposed into individual elements.

¤  Structure in the form of a loop (top-level
structure)

¤  Simultaneously updating all elements of the
data structure (Synchronization)

¤  Examples:
¤  Partial sums of a linked list.

¤  Uses:
¤  Widely used on SIMD platforms (HPF77)

¤  Combinatorial optimization Problems.
¤  Partial sums

¤  List ranking
¤  Euler tours and ear decomposition

¤  Finding roots of trees in a forest of
rooted directed trees.

Pipeline Strategy

¤  Involves performing a calculation
on many sets of data, where the
calculation can be viewed in
terms of data flowing through a
sequence of stages
¤  Instruction pipeline in modern

CPUs
¤  Vector Processing (Loop-level

pipelining)
¤  Algorithm-level Pipelining
¤  Signal Processing
¤  Graphics
¤  Shell Programs in Unix

Event-Based Coordination Strategy

¤  Application decomposed
into groups of semi-
independent tasks
interacting in an irregular
fashion.

¤  Interaction determined by
a flow of data between
the groups, implying
ordering constraints
between the tasks

Final Notes

¤  Every Parallel Algorithm involves a collection of tasks that can execute
concurrently
¤  The key is finding tasks (and collect them)

¤  Data-based decomposition is good if:
¤  The most computationally intensive part of the problem is organized around the

manipulation of a large data set structure.
¤  Similar operations are being applied to different parts of the data structure with

independency.

¤  However the desired features of a concurrent/parallel program (efficiency,
simplicity, portability and scalability):
¤  Efficiency conflicts with portability
¤  Efficiency conflicts with simplicity

¤  Thus a good algorithm design must strike a balance between abstraction and
portability and suitability for a particular target architecture.

Recommended Lectures

¤  The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel
Applications”, by Clay Breshears (Ed. O Reilly, 2009)

¤  Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s
Blog: http://www.informit.com/articles/article.aspx?p=1626979)

¤  Patterns for Parallel Programming., by T. Mattson., B. Sanders and B.
MassinGill (Ed. Addison Weslley, 2009) Web Site:
http://www.cise.ufl.edu/research/ParallelPatterns/

¤  Designing and Building Parallel Programs, by Ian Foster in
http://www.mcs.anl.gov/~itf/dbpp/

