
GPU Programming with 
CUDA

Pedro Velho



Meeting the audience!

How many of you used concurrent programming 
before?

How many threads?

How many already used CUDA?



Introduction
from games to science

4

5

CUDA 

GPU Programming3

Architecture 2

Final Remarks

1



CPU vs GPU



CPU vs GPU

- A few general purpose cores 
- Big cache memory 
- Eg.: Nehalem i7 quad-core 

- 4 cores (8 threads) 
- Cache is about 50% of die area



CPU vs GPU

- A few general purpose cores 
- Big cache memory 
- Eg.: Nehalem i7 quad-core 

- 4 cores (8 threads) 
- Cache is about 50% of die area

- Design goal massively parallel graphics 
- A lot of replicated functional units 
- Small cache size 
- Eg.: NVIDIA GTX280 

- 240 SP (streaming processors) 
- support for 30720 simultaneous threads 



Computer Graphics is a 
Computational intensive application



Computer Graphics is a 
Computational intensive application

A lot of $$$ from game industry 



Computer Graphics is a 
Computational intensive application

A lot of $$$ from game industry 

Expressive gain in performance 
for parallel graphics rendering

Caught attention from the 
scientific community



GPU is also adapted to several 
scientific applications

Molecular Biology Fluid Simulation Weather Forecast



GPGPU

Driver Calls

GPU Device

User Application

Model the application directly 
using Computing Graphics 
driver calls

Need to port the problem to a 
complete different domain

DirectX or OpenGL are not 
easy to figure out



Potential Gain in Performance

100 times faster!



CPU vs GPU 



Potential Gain in Performance

Victor W Lee et. al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of 
Throughput Computing on CPU and GPU

100 times faster!

This is a myth!

T
GTX280

T
Core i7

Several guys from Intel

Core i7 - quadcore

vs.

GTX280


14 kernels


relative performance!

Reason:

Rethink your problem is 
challenging



Potential Gain in Performance

Victor W Lee et. al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of 
Throughput Computing on CPU and GPU

100 times faster!

This is a myth!

T
GTX280

T
Core i7

We still have a 10 times factor

Several guys from Intel



Substantial gain in execution time (10x)!

before GPU with GPU

one year one month plus a week

one day
two hours and twinty 

four minutes

one hour six minutes



GPU Programming today

Driver Calls

GPU Device

User Application

OpenCl CUDA

Don’t need to port the application to 
DirectX or OpenGL



CUDA vs OpenCl

- Proprietary (only work on NVIDIA) 
- Enhanced software support 
- Several software libraries and examples

- Open specification 
- Work on NVIDIA and ATI video cards 
- Aim at any computing device



Introduction
from games to science

4

5

CUDA 

GPU Programming3

Architecture 2

Final Remarks

1



Computer Architectures 
from single thread to multithread



Superscalar processors

Execute up to 8 instructions 
simultaneously 

4 stage 
pipeline

8 Execution 
units

+

&&

*

=

+

/

**

<< {



Superscalar processors make the illusion
of concurrent execution

CPU

Instruction from  
one thread arrive 

A hardware issue unit 
decides which instructions 
can execute simultaneously 

Front end
issue unit

execution unit

waste due to 
instruction  
dependecy 
(bubbles)



A program has instructions for several 
threads in memory

blue thread 

red thread 

green thread 

yellow thread 

DRAM



Single threaded multicore

CPU CPU

DRAM



Single threaded multicore

CPU CPU

DRAM

Twice more processing power 



Single threaded multicore

CPU CPU

DRAM

Twice more waste!!

Twice more processing power 



Super-threadeding

CPU

each stage only run 
instructions from one thread

DRAM



Multi-threadeding

CPU

Execute instruction from 
more than 1 thread at a time

DRAM



GPU architecture



Streaming Processor (SP)



Streaming Processor (SP)

Cacheless 
Pipelined 
Single issue



Streaming Multiprocessor (SM)

Array of 8 (eight) SPs

Each SFU 
4 FP multiply 
for sin, cosin



Streaming Multiprocessor (SM)

Multi-threaded 
can issue several instructions

Array of 8 (eight) SPs

Each SFU 
4 FP multiply 
for sin, cosin



Texture Processor Cluster
3 SM’s

GPU Architecture (GT200)



The beast

10 TPC’s 
3 SM’s per TPC 
8 SP’s per SM 

Total of  240 SP’s

GPU Architecture (GT200)



GPU Architecture (GT200)

very small cache

To hide memory 
latency need 
several threads  
available per SM

Schedule per group of 32 threads, 
called a warp



Each SM handles 32 warps 
simultaneously

32 x 32 = 1024 threads per SM

1024 x 30 = 30720 simultaneous threads

GPU Architecture (GT200)



Introduction
from games to science

4

5

CUDA 

GPU Programming3

Architecture 2

Final Remarks

1



GPU Programming

CPU is the HOST Processor

GPU is a co-processor

GPU has 
its own DRAM



GPU Programming

Massively parallel processor (GT200 - 30720 Threads)

- CPU send burst of threads to execute on the GPU

Use DMA to transfer from CPU DRAM to GPU DRAM

CPU becomes can do something useful aside with GPU

Applications must be rewritten to cope with GPU



GPU Programming

GCC

GPU

Integrated CPU + GPU source

CPU Code GPU Code

CPU

Specific Compiler

Same code can run on both devices CPU and GPU



Example I 
Discover your CUDA environment.



Using CUDA on Guane Step-by-step

Connect to guane

$ ssh guane

Reserve a node on shared mode (so other users can have it too)

$ oarsub -l nodes=1 -t timesharing -I

Download the CUDA exemples from sc-camp.org

$ wget http://www.sc-camp.org/cuda/gpu_programming.tgz

Configure the path to CUDA_SDK

$ export CUDA_SDK_PATH=/usr/local/cuda-6.5/

http://sc-camp.org
http://www.sc-camp.org/cuda/gpu_programming.tgz


Using CUDA on Guane Step-by-step

Uncompress the folder 

$ tar zxvf gpu_programming.tgz

Enter the directory

$ cd gpu_programming/01-devicequery

Compile

$ make

Run 

$ ./device_query



All nodes have 8 GPU Tesla S2050

Yet no support to reserve a single CPU+GPU

Share these GPUs wisely with your mates

Using CUDA on Guane Step-by-step



Based on the idea of kernel

Essentially SPMD

Define single thread application code

Use thread id to assign different data per thread

GPU Programming



Definition of a single thread computing 
function (or kernel)

GPU Programming



Definition of a single thread computing 
function (or kernel)

int kernel()
{

int i = thread.id;
a[i] = a[i] + b[i];

}

GPU Programming



Definition of a single thread computing 
function (or kernel)

int kernel()
{

int i = thread.id;
a[i] = a[i] + b[i];

}

GPU Programming

1- How to Compute the thread ID? 
2- How do we copy data from CPU to GPU? 
3- How to dispatch kernel on the device? 
4- How to get results back when done?



Have support for operations on the 
Host (CPU) and Device (GPU)

mallocDeviceMemory
copyFromHostToDevice
computeKernel
copyFromDeviceToHost

GPU Programming

1- Copy data from Host to Device 
2- Execute kernel on the device 
3- Wait for kernel to finish 
4- Copy data from Device to Host

Depends on the programming interface 



Introduction
from games to science

4

5

CUDA 

GPU Programming3

Architecture 2

Final Remarks

1



CUDA Programming

- C extension

- Support for several platforms:
- Linux
- Windows
- MacOS

- Need to install NVIDIA Driver, Toolbox and SDK



CUDA Programming

Provide several libraries

STL C++ Port to CUDA Linear Algebra 
cuBLAS

http://developer.nvidia.com/thrust


Step-by-step installation:

- Install the CUDA Toolkit
  $ ./cudatoolkit_4.2.9_linux_64_ubuntu11.04.run 

- Install the driver
  $ sudo ./devdriver_4.2_linux_64_295.41.run

- Restart GUI
  $ sudo /etc/init.d/gdm start

- Install SDK
  $ ./gpucomputingsdk_4.2.9_linux.run

CUDA Programming Requirements for Linux

- 1 NVIDIA CUDA aware card
- GCC installed
- Downloaded Toolkit, Driver, and SDK

MOSTRAR SITE

Only the driver requires superuser 
priviledges 

http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run


Function directivesCUDA Programming API

Execute on  Called from

__device__ float DeviceFunc(...) device device

__global__ void kernelFunc(...) device host

__host__ float HostFunc(...) host host

Kernel function must respect several properties 
must return void 
no static variables 
no recurrence 
no variable number of arguments

Can be used combined with __device__



Example II 
Simple kernel hello world.



Hello World

__global__ void mykernel (void){
//simple kernel does nothing 

} 

 int main(void) { 
  mykernel<<<1,1>>>(); 
  printf("Hello World!\n"); 
  return 0; 
 } 



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

GPU Programming



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

GPU Programming

Where should we use parallel computing?



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

Multi threaded application

GPU Programming



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

Multi threaded application

GPU Programming

thread 23
c[23] = a[23] + b[23];



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

Multi threaded application

GPU Programming

thread 23
c[23] = a[23] + b[23];

thread 2
c[2] = a[2] + b[2];



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

Multi threaded application

GPU Programming

thread 23
c[23] = a[23] + b[23];

thread 2
c[2] = a[2] + b[2];

thread 3
c[3] = a[3] + b[3];



Single threaded application
int a[1024];
int b[1024];
int c[1024];

int main()
{

for(int i=0; i<1024; i++){
c[i] = a[i] + b[i];

}
}

Multi threaded application

Need to instantiate 1024 threads

GT200 supports up to 30720 threads simultaneously!!!

GPU Programming

thread 23
c[23] = a[23] + b[23];

thread 2
c[2] = a[2] + b[2];

thread 3
c[3] = a[3] + b[3];



Example III 
Add two integers.



Adding two integers

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}



Adding two integers

int main(void) {
int a, b, c;             // host copies of a, b, c
int *d_a, *d_b, *d_c;     // device copies of a, b, c
int size = sizeof(int);
// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
// Setup input values
a = 2;
b = 7;
// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}



H
os

t 
C

PU

Memory allocation

cudaMalloc(...) 

Allocate global memory
2 parameters:
Pointer
Number of bytes

CUDA Programming API



H
os

t 

Transfer data

cudaMemcpy(...) 

4 parameters:
Destination pointer
Source pointer
Bytes to copy
Transfer type

HostToHost
HostToDevice
DeviceToHost
DeviceToDevice

CUDA Programming API



Memory deallocation

cudaFree(...) 

Frees global memory
1 parameter:
Pointer

H
os

t 

CUDA Programming API



...
float *aHost, *bHost, *cHost;
...
__global__ void kernel(float *a, float *b, float *c){

 int i = threadidx.x;
 c[i] = a[i] + b[i];

}

int main(){
float *aDev, *bDev, *cDev;

cudaMalloc(void *aDev, 512 * sizeof(float));
    cudaMemcpy(aDev, aHost, 512 * sizeof(float));

cudaMalloc(void *bDev, 512 * sizeof(float));
    cudaMemcpy(bDev, bHost, 512 * sizeof(float));

    kernel<<<1,512>>> (aDev, bDev, cDev);

    cudaFree(aDev); cudaFree(bDev); cudaFree(cDev);
}

CUDA Programming Simplified code



Thread indexing

Threads are organized in blocks

Blocks are organized in grids

Legacy from CG applications

CUDA Programming API



Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,2)

Block
(1,2)

Block
(2,2)

Grid

CUDA Threads



Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,2)

Block
(1,2)

Block
(2,2)

Grid

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Block

CUDA Threads



mapping threads

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block 
(0,0)

Block 
(1,0)

Block 
(0,1)

Block 
(1,1)

dim3 Grid(2,2); 
dim3 Block(2,2); 
kernel<<<Grid,Block>>>(parameters);

CUDA Threads



CUDA Threads



CUDA Threads

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(5,0)

Block (0,0)

How can we arrange 6 threads?

MAX

THREADS PER BLOCK

DEPEND ON THE 
ARCHITECTURE DEVICE QUERY



CUDA Threads

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(5,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Block (0,0)

Block (0,0) Block (1,0)

How can we arrange 6 threads?



CUDA Threads

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Block (0,0)

How can we arrange 6 threads?

Block (2,0)Block (1,0)



CUDA Threads

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

How can we arrange 6 threads?

Bl
oc

k 
(0

,0)

Bl
oc

k 
(1

,0)

Bl
oc

k 
(2

,0)

Bl
oc

k 
(3

,0)

Bl
oc

k 
(4

,0)

Bl
oc

k 
(5

,0)



CUDA Threads

Mapping on an unique grid

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block 
(0,0)

Block 
(1,0)

Block 
(0,1)

Block 
(1,1)



CUDA Threads

Mapping on an unique grid

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block 
(0,0)

Block 
(1,0)

Block 
(0,1)

Block 
(1,1)

idx = blockIdx.x*blockDim.x + threadIdx.x;

idy = blockIdx.y*blockDim.y + threadIdx.y;



CUDA Threads

Mapping on an unique grid

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(0,1)

Thread
(1,1)

Block 
(0,0)

Block 
(1,0)

Block 
(0,1)

Block 
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)idx = blockIdx.x*blockDim.x + threadIdx.x;

idy = blockIdx.y*blockDim.y + threadIdx.y;



CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

k = idx + idy*blockDim.x*gridDim.x;



CUDA Threads

Get an unique thread index

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

k = idx + idy*blockDim.x*gridDim.x;

Thread
(0)

Thread
(1)

Thread
(2)

Thread
(3)

Thread
(4)

Thread
(5)

Thread
(6)

Thread
(7)

Thread
(8)

Thread
(9)

Thread
(10)

Thread
(11)

Thread
(12)

Thread
(13)

Thread
(14)

Thread
(15)



Exercise 
Implementing the sum of two vectors using CUDA of a 
unlimited number of elements.



Introduction
from games to science

4

5

CUDA 

GPU Programming3

Architecture 2

Final Remarks

1



SDK has many applications:

  $ cd $NVIDIA_CUDA_SDK

  $ make

  $ make check

  $ C/bin/linux/release/

CUDA Programming



GPU is good for...

loosely coupled threads (avoid synchronisation)

computing bound applications

these architectures can not replace general purpose CPU

great insight for future architectures



CUDA Pros

Support for several OS

A lot of documentation

Many libraries available

Great performance

CUDA Cons

NVIDIA proprietary



Architectures of 
Today

AMD Fusion (APU)
CPU + GPU

Highly heterogeneous



NVIA Tegra 
ARM + GPU

Highly heterogeneous

Architectures of 
Today



Intel Xeon Phi

Highly heterogeneous

“ Moving a code to Intel Xeon Phi might 
involve sitting down and adding a couple 
lines of directives that takes a few minutes. 
Moving  a code to a GPU is a project. ”

Dan Stanzione,  Deputy Director at 
Texas Advanced Computing Center

The Intel® Xeon® Phi™ Coprocessor: 
Parallel Processing, Unparalleled 
Discovery 

From intel’s website

Architectures of 
Today



Further help

CUDA Developer Network 

http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/
group__CUDART__MEMORY_g48efa06b81cc031b2aa6fdc2e9930741.html

http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_g48efa06b81cc031b2aa6fdc2e9930741.html


Bibliography

GPU Gems 2, available online
http://http.developer.nvidia.com/GPUGems2/

gpugems2_part01.html

GPU Gems 3, available online
https://developer.nvidia.com/gpugems/GPUGems3/

gpugems3_pref01.html

http://http.developer.nvidia.com/GPUGems2/gpugems2_part01.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_pref01.html


Bibliography

Programming Massively Parallel Processors: A Hands-on 
Approach, David B. Kirk and Wen-Mei Hwu, Second Edition, 
Morgan Kaufmann, 2009

NVIDIA developer zone, http://developer.nvidia.com/

http://developer.nvidia.com


Exercise IV 
Naïve matrix multiplication on GPU.

http://www.es.ele.tue.nl/~mwijtvliet/5KK73/?page=mmcuda

http://www.es.ele.tue.nl/~mwijtvliet/5KK73/?page=mmcuda

