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The remarkable progress of deep learning in CV and NLP
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“Hammerhead shark”

Deep Taylor (GoogleNet)
https://arxiv.org/pdf/1512.02479v1.pdf
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“How's it going, hey,
this is Guillermo, How
are you?”

“Que tal, eh,
yo soy Guillermo,

como estas?”

Mel spectrograms (WaveRNN)
https://arxiv.org/pdf/1904.06037.pdf



Distributed Deep Learning in Healthcare

2016 - Deep Learning for Detection of Diabetic Eye Disease, by Google Brain Team

JAMA doi:10.1001/jama.2016.17216

Diabetic retinopathy is the fastest growing cause of blindness

+ By 2016 there were more than
415 million diabetic patients at risk.

+ If caught early, the disease can be treated;
if not, it can lead to irreversible blindness.”

+ The severity task is determined by
by the type of lesions present, like
hemorrhages, microaneurysmes,
hard exudates and others.
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+ They applied a distributed stochastic gradient descent implementation to train the network
weights, using model replication asynchronously over a cluster of nodes.

** Large Scale Distributed Deep Networks, https://dl.acm.org/doi/10.5555/2999134.2999271


https://en.wikipedia.org/wiki/Diabetic_retinopathy

“Developing neural network image
classification models often requires significant
architecture engineering”



Automatic Machine Learning For Distributed Systems

2018 - Learning Transferable Architectures for Scalable Image Recognition, by Google Brain Team
https://arxiv.org/pdf/1905.11946.pdf

Neural Architecture Search called NASNet search space ol
+ The main feature is search space enable transferability:
NASNet search the best convolutional cell on a small dataset (CIFAR-10) Pl hC
and then applied to the larger dataset (ImageNet). | SR | Ex2ped

I I

* CIFAR-10: 60,000 images in 10 different classes. b '

: hidden layer A : \ hidden layer B !
* ImageNet: > 14 million images with more than 20.000 classes. ] i |
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Automatic Machine Learning For Distributed Systems

2018 - Learning Transferable Architectures for Scalable Image Recognition, by Google Brain Team.
https://arxiv.org/pdf/1905.11946.pdf

Neural Architecture Search called NASNet search space
+ NASNet found a model constructed from the best cell Training the NASNet using a distributed approach:

achieving 1.2% better in top-1 accuracy than the best + The controller generate a distributed worker pool with 450 tasks.

human-invented architecture. + For that pool, they used 450 GPUs concurrently at any time.
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Distributed Deep Learning in Healthcare

2019 - Exascale Deep Learning to Accelerate Cancer Research, by Oak Ridge National Lab.

IEEE doi:10.1109/BigData47090.2019.9006467

Source slide image

Multi-objective optimization for deep learning convergence
and effectively utilizing HPC systems. (MENNDL)

* MENNDL: Multi-node Evolutionary Neural Networks for Deep Learning.

Quantification task: Tumor Infiltrating Lymphocytes (TILs)
“During the cancer diagnosis and treatment process, a patient may
have a biopsy, which produces a diagnostic tissue sample.”

+ From whole slide image they extract patches of 50x50 um,

and each one could contains from 100.000 to 1000.000 cell nuclei.

+ The dataset used has 86,000 patches (with 20% Tlls Positives)
and all the patches has an image with 100x100 pixel resolution.

+ It contains seven different cancer types in the breast, colon, lung,
pancreas, prostate, skin, and pelvic forms.

Quantization Result


https://doi.org/10.1109/BigData47090.2019.9006467

Distributed Deep Learning in Healthcare

2019 - Exascale Deep Learning to Accelerate Cancer Research, by Oak Ridge National Lab.

IEEE doi:10.1109/BigData47090.2019.9006467

4,608 Nodes, with a total of:
9,216 CPUs,
27,648 GPUs and
10 PB DDR4

We can generate a single model that can study the
seven different types of cancer?

Each Node, has:
2 IBM Power9 CPUs,
6 Nvidia Volta GPUs and
512 GB DDR4

Evolutionary multi-objective optimization

+ The objective function is compose by a vector-valued like:
(eg., speed or accuracy).

+ MENNDL, starts with some initial set of hyperparameters
of Inception Neural Architecture.

batch_size input_channels num_outputs kernel_size stride Tera_FLOPS

256 5 4 64.272

i 1
256 256
\ i
-} T
B 0.145 - === Worst Observed GPU Performance
| ’ == Best Observed GPU Performance
— 0.036 Y Measured System Performance
— — T T T T

| 128 512 1024 2048 3316 4585

32 1 1 1

oot Number of Nodes (6 GPUs each)

System-Level Performance (ExaOP/s)

32

Parallel hyperparameter search for 10.000 convolution layers using tensor. Weak scaling results


https://doi.org/10.1109/BigData47090.2019.9006467

Automatic Machine Learning For Distributed Systems

2020 - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Google Brain Team.

https://arxiv.org/pdf/1905.11946.pdf

Multi-objective function for model scaling.
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+ There is a principles method for scaling CNNs that can achieve

better accuracy and efficiency?

Results over the ImageNet 2012 challenges
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+ The optimization goal:

ACC(m) x [FLOPS(m)/T]"

Where,
m denotes the model;
T is the target FLOPS;
W=-0.07 is a hyperparameter for controlling the
trade-off.



What are the main components to develop
a distributed deep learning application?
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Main components to develop a distributed deep learning application

Data Input

Performance metrics:

+

+
+
+

Deep Learning Workflow

‘ ‘ yrFeature Extractionr \‘

i—y and/or

‘ Representation

Accuracy
Generalization
Interpretability
Robustness

I Multi-class and/or | | Data and/or

Parallel and Distributed Workflow

Resource and

> ’ Multi-task Learning Model Replication — Worker Management—) Computing Modes

Performance metrics:

+

+
+
+

Execution Time
Portability
Scalability
Energy Efficiency
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Computation modes to consider for training a neural network

Levels of Parallel and Distributed Processing

Level 1
PS PS
A A
l : l " Y Y l
i Worker  Worker Worker Worker ~ Worker
Multi-GPU Node CPU-GPU Node Level 2
GPU GPU GPU Hebrid P
YDri rocessor
—‘ I ’ Hode
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CPU CPU CPU
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| RAM . RAM

In a cluster of nodes:
° GRPC
° MPI

In a multi-GPU server:
e  Synchronous
e  Asynchronous

In a desktop computer:
e  Exploit the memory
e  Batch execution

12



Main Optimized Frameworks to Accelerate Deep Learning Training on GPUs

Apache Software Foundation

Uber Engineering Team

y‘Fv

Tensor

Google Brain Team

Keras

Built on top of TensorFlow 2.0

O

‘gDiagnoseNET

https://hal.archives-ouvertes.fr/
hal-02869960

O PyTorch

Facebook's AI Research lab

DeepSpeed

https://arxiv.org/abs/1910.02054

FedML

https://arxiv.org/pdf/20607.13518

13



‘gDiagnoseNET

Repository: https://github.com/IADBproject/diagnosenet

Mini-Cluster Jetson TX2 Array Node with 24 Jetson TX2

14



DiagnoseNET: Programming Framework Scheme
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Synchronous and Asynchronous Data Parallel Training

Example of Gradients computed for a graph in TensorFlow
https://arxiv.org/pdf/1603.04467 .pdf
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DiagnoseNET Model Graph Generator and Data Manager

Step 1: Model definition to generate several graphic-model objects.

import diagnosenet as dt

stacked_layer_1 = [dt.Relu(14637, 2048),
dt.Relu (2048, 1024),
dt.Relu (1024, 1024),
dt.Linear (1024, 14)]

model_1 = dt.sequentialGraph (
input_size=14637, output_size=14,
layers=stacked_layer_1,
loss=dt.CrossEntropy,
optimizer=dt.Adam(1r=0.001))

Step 2: Dataset splitting and micro-batching over the workers.

data_config_1 = dt.Batching(

dataset_name="medical_D1", valid_size=0.05,
devices_number=4, batch_size=128)

17



DiagnoseNET for Distributed Training with gRPC

Step 3: Select the computing modes as gRPC asynchronous replication

platform = dt.Distibuted_GRPC(
model=model_1,
datamanager=data_config_1,
monitor=enerGyPU(machine_type="arm"
max_epochs=20,
ip_ps=argv[0], ip_workers=argvl[1])

platform.asynchronous_training/(
dataset_path=/myworkspace/datasetpath,
inputs_name="X.npy", targets_name="Y.npy"
job_name=argv[0], task_index=argv[1])

Step 4: Distributed orchestration with GRPC asynchronous.

import diagnosenet as dt

dt.between_graph_replication (
d_replica_path=/myworkspace,
d_replica_name="GRPC_replica.py",
ip_ps="hostl",
ip_workers="host2,host3,host4,hostb",
num_ps=1, num_workers=4)

18



DiagnoseNET MPI Synchronous and Asynchronous Algorithms

Algorithm 1 Synchronous MPI Kernel

if master True then

masterInput < {dataset, workers}
Distributed Batching(dataset, workers)

else

workerInput < {batches, hyperparameters}
model < sequential Graph(hyperparameters)

Algorithm 2 Asynchronous MPI Kernel

while ConvergenceCondition do

if master True then
for all worker € workers do
masterGrads < received(workerGrads)

averageGrads < average(masterGrads)
send(averageGrads)

else
workerGrads + compute(model, batches)
send(workerGrads)

if master True then
for all worker € workers do

masterLoss < received(worker Loss)

averageLoss < average(masterLoss)
if over fitting(averageLoss) True then
send(averageLoss, earlyStopping)
else
send(averageLoss, False)
else
workerW eights < received(masterWeights)
projection < model. Apply(workerW eights)
workerLoss < computeLoss(projection, labels)
send(workerLoss)

if master True then
masterInput < {dataset, workers}
Distributed Batching(dataset, workers)

workerInput < {batches, hyperparameters}
model < sequential Graph(hyperparameters)

while ConvergenceCondition do
if master True then

convergeFlag < received(workerCond)

masterGrads < received(workerGrads)
collectGrads < collection(masterGrads)
averageGrads < average(collectGrads)

send(averageGrads)

else

if over fitting(averageLoss) True then
send(averageLoss, earlyStopping)
else
send(averageLoss, False)

if decrease(averageLoss) True then
send(Updated(masterWeights))

workerGrads < compute(model, workerInput)
send(workerGrads)

if master False then

workerWeights < received(masterWeights)
projection < model. Apply(workerW eights)
workerLoss < computeLoss(projection, labels)
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DiagnoseNET Model Graph Generator and Data Manager

Step 1: Model definition to generate several graphic-model objects.

import diagnosenet as dt

stacked_layer_1 = [dt.Relu(14637, 2048),
dt.Relu (2048, 1024),
dt.Relu (1024, 1024),
dt.Linear (1024, 14)]

model_1 = dt.sequentialGraph (
input_size=14637, output_size=14,
layers=stacked_layer_1,
loss=dt.CrossEntropy,
optimizer=dt.Adam(1r=0.001))

Step 2: Dataset splitting and micro-batching over the workers.
data_config_1 = dt.Batching(

dataset_name="medical_D1", valid_size=0.05,
devices_number=4, batch_size=128)
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DiagnoseNET for Distributed Training with MPI

Step 3: MPI asynchronous platform execution modes

platform = dt.Distibuted_MPI(
model=model_1,
datamanager=data_config_1,
monitor=enerGyPU(machine_type="arm"),
max_epochs=20, early_stopping=3])

platform.asynchronous_training(
dataset_name="medical_D1",
dataset_path=/myworkspace/datasetpath,
inputs_name="X.npy", targets_name="Y.npy",
weighting=1)

Step 4: Launcher the training process using the MPI options

mpirun -np 5

--hostfile <filename> python3.6 mpi_processing.py

21



Case of Study 1: Medical Care Purpose Classification for In-Patients

Other situations

Proceedings of Medical Cardiovascular /
Respiratory Care

Circulatory system disorders

Proceedings of Neuro-Muscular Medical
Care

Procedings of Medical Care Mental Health

Procedings Sensory and Skin Medical Care

Procedings of Rheumatics / Orthopedic
Medical Care

Procedings of Post-Traumatic Medical Care
Proceedings of Medical Amputations
Palliative care

Placement expectation

Rehabilitation

Procedings of Nutritional Medical Care

Grouping impossible

0 5000 10000 15000 0 250 500 750 1000 0 500 1000 1500 2000
Train (85 %) Valid (5 %) Test (15 %)

+ In-Patients Distribution for the PACA Clinical Dataset (2008: 121.369 In-Patients )



MLP Hyperparameter Search to Classify The Care Purpose

Search Space Model Descriptors.

Hyperparameters (d) | Hyper. Configurations (n) | State
Learning rate 0.0005, 0.001, 0.005, 0.01, | Fixed:
0.05, 0.1 0.001
Activation function relu, tanh, linear Fixed:
relu
Num. Units per layer 16, 32, 64, 128, 256, 512, | Search
1024, 2048, 4096
Num. hidden layers 2,4, 8,16 Search
Regularization Dropout: 0.6, 0.7, 0.8 Fixed:
0.8
Batch size 24.576, 12.288, 6.144, 3.072, | Search
1.536, 768
Num. of workers 4,6, 8, 10, 12 Search

Parameters (millions)
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Model Dimension Space in Number of Parameters
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MLP Hyperparameter Search to Classify The Medical Task 1

(a) Fine-grain convergence validation. (b) Middle-grain convergence validation. (c) Course-grain convergence validation.

1

8 8 os g
2 o¢ 2 2 oa
— R e "
: . :
Epochs Epochs Epochs
(d) Fine-grain test prediction by class. (e) Middle-grain test prediction by class. (f) Course-grain test prediction by class.
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Case of Study 2: Atrial Fibrillation Classification for Cardiac Diagnosis

Distribution of Cardiac Arrhythmia Labels

Class | Label Source Training Small
Description dataset Dataset Samples

0 Normal 5,050 34,303 4241

1 AF 738 6,542 815

2 Others 2,456 18,986 2424

3 Noisy 284 1,382 171
= Normal rhythm Recording—A00001
§.] \ IR l J 81010 O A AR
— 72 AF rhythm Recording—A00004
5.5 R e 7 L0
— _ﬂ Other rhythm Recording—A00077
I
§ wlnlol el bl do-dicds bl L ahsodiad
E a l |
PO Noisy recording Recording—A01246
g ok,k_f"d"«,&.«\-ﬂ‘v‘~."«“v\""‘-\f""'"“‘»\f""»rf*"‘* T ' \ il \*"*va;w "l

Time (s)

Examples of the ECG waveforms

ECG Convolutional Neural Network

Input: ECG Trace

Batch Normalization

Batch Normalization

SUbsampImg
resblock

Softmax

Output

Max Pooling

TR ? ~ Output
| Batch Normalization | | Con1D |
| ReILU | | Dr;pout |
| Dro:::out | | R(IaLU |
| ConviD f— Baten Nomalzgtion |

*._ Normal resblock

~Input — Max Pooling

~ Output
[ Dropost || CowiD |
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~ Subsampling resblock
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Worker Scalability for Training the Two Case of Studies

B GRPC-A W MPI-A MPI-S
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Future Works and Acknowledgements

1) Add population search methods for model generalization and scalability training of neural
networks on HPC systems.

2) Add a dedicated module for federation learning experiments with asynchronous distributed
learning and contribute to data autonomy in healthcare centers.
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the DianoseNet project.
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+ We thank, Carlos Jaime, Luis Nufiez, Thomas Fryer and Mario Reale for the support to continue with the
development of the DiagnoseNET project.
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Gracias por tu atencion!

Preguntas e inquietudes: jagh1729@gmail.com

John Anderson Garcia Henao
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