HPC Multi-physics Biomass Furnace simulations as a Service

Xavier Besseron¹

Henrik Rusche², Bernhard Peters¹, Alban Rousset¹ Ralfas Lukoševičius³, Linas Paukštaitis³, Laimonas Narbutas³

- 1: University of Luxembourg
- 2: Wikki GmbH, Germany
- 3: Enerstena UAB, Lithuania

11th International SuperComputing Camp 2020→ Virtual

Nov. 30th to Dec. 11th 2020

http://www.sc-camp.org/

Challenges in the simulation of biomass combustion

Introduction

Biomass combustion (e.g. wood chips)

- widely used for generating electric and thermal energy
- renewable and potentially carbon-neutral energy source

Combustion process

- very complex
- requires advanced techniques to minimize harmful gas emissions

Alternative biomass

- wood waste, straw, bark, olive pits, nut shells, grain husks, bagasse, etc.
- can cause problems due to their chemical composition, ash melting temperature, humidity, ash content, calorific value and others.

Combustion process in a biomass furnace

Combustion chamber of a biomass furnace

- forward acting grate
- transports the fuel through the furnace

The fuel undergoes a number of steps

- drying, pyrolysis, char burning, cooling in which it releases hydrocarbons.
- hydrocarbons are burned in the gas phase

Use numerical simulations

- to study efficiency and performance
- and reduce the costs of experiments

Numerical Approach: Multi-Physics Simulation

Two-way coupling between Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD)

XDEM (Lagrangian) for:

- Motion and collisions of biomass particles
- Conversion of biomass particles

OpenFOAM (Eulerian) for:

- Flow of gas phase
- Reactions in the gas phase

CFD-DEM coupling is required to capture the physics of biomass furnaces and offers unprecedented insight.

Complexity of biomass furnace simulations

The setup, execution and post-processing of biomass furnace simulations is challenging.

The necessary steps include:

- Generation of furnace and grate geometry
- CFD mesh generation and CFD case setup
- Calculation of the initial particle bed
- DEM case setup
- Calculation of fuel properties from ultimate analysis

This complexity is a serious obstacle, in particular for SMEs

 The adoption of such technologies requires substantial investment in computer hardware, software licenses and training of engineering staff.

HPC Multi-physics Biomass Furnace simulations as a Service

a simplified workflow for end user

CloudiFacturing Overview

- The CloudiFacturing solution is designed to support manufacturing SMEs and their needs for advanced cloud- or HPC-based ICT solutions.
- The CloudiFacturing solution will be open, empowering different stakeholders to become members of the community.
- All the services offered in the CloudiFacturing Solution will be based on a pay-per-use or subscription business model with a unified billing process.

Objective: a simple user workflow

Spreadsheet Input File

Job submission

Submission Web Portal

HPC Simulation

Progress Report

Simulation Results

Average bed surface temperature temperature over time

Report

Under the hood

How to much input is required?

Furnace and grate design

- parametrised with a few numbers
- geometry is generated automatically

Fuel / Wood chip

- characterised by ultimate analysis
- thermo-physical values obtained from standard experiments

Air inlets

- can be placed at any position
- require the full composition when recirculation is used

→ A few hundred degrees of freedom!

Designing and implementing a web interface was out of scope

HPC Biomass Furnace Simulation

Two-way Direct Coupling

- DEM → CFD and CFD → DEM
- XDEM and OpenFOAM linked into one executable
- All coupling data exchange via shared memory

Hybrid Parallelization Scheme

- OpenFOAM running in parallel using MPI
- XDEM parallelized using OpenMP

HPC Execution

- Portable execution using Singularity
- HPC Job submission using SemWES
- Execution on IT4Innovations HPC platform

IT4Innovations national 01\$#&0 supercomputing center 0#01%101

Biomass Furnace simulation using XDEM+OpenFOAM

Summary and Future Work

Multi-Physics Biomass Furnace Simulation

- Cloud-based interface and submission portal
- HPC execution back-end
- → Application as a Service (AaaS)

Simplified Workflow for end user

- All input settings provided in a spreadsheet
- Automatic generation of the case
- Automatic execution on HPC platform
- Generation of a report with the results

Part of the CloudiFacturing project

- Experiment 15 BioOpt
- To be integrated in the Digital Marketplace
- Target audience: SMEs

Thank you for your attention!

More details about the CloudiFacturing BioOpt Experiment: http://luxdem.uni.lu/projects/2020-CloudiFacturing_BioOpt/

Luxembourg XDEM Research Centre
http://luxdem.uni.lu/
University of Luxembourg

Contact: xavier.besseron@uni.lu

Acknowledgement

The project CloudiFacturing receives funding from the European Union's Horizon2020 research and innovation programme (Grant No. 768892).