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The (Big) Questions: What and How?



• Large Data Sets
• Complex Mathematics
• Complex Models
• Real Time 
• Interaction and Confrontation 
• Large Scale Visualization
• High Resolution
• High Performance and Capacity

• VR Needs
• Big Data and Deep Learning

Why?

COLLABORATION



Big Problems, Smart Solutions 

High Performance 
(Computing) Knowledge

Infrastructure

Platforms

Applications



Challenges 

Infrastructure

Post Moore Era Architectures
• Parallel Balancing, I/O, Memory Challenges

Dark Sillico

Exascale
• Computer Efficiency (Processing/Energy Consumption)

Hybrid Platforms (CISC+RISC+Others)
• TPUs, ARM…

Data Management

Advanced Networks

Fog/Edge

HPC@Pocket

… Quantum Computing

Platform

Programmability
• New Languages and Compilers

Computing Efficiency

Data Movement and Processing (In Situ, In 
Transit, Workflows)

HPC as a Service
• Science Gateways, Containers

Viz as a Service (In Situ)

Protocols

IA and Deep Learning Frameworks

Quantum Computing

Applications

IA and Deep Learning

Algorithms Implementation

Use of Interpretators (as Python)

Community versions

Open Algorithms, Open Data

Utra Scale Applicatons

…and more!



About Parallelism
Ê Implicit parallelism is a characteristic of a 

programming language that allows a 
compiler or interpreter to automatically 
exploit the parallelism inherent to the 
computations expressed by some of the 
language's constructs.

Ê Explicit parallelism is the representation 
of concurrent computations by means of 
primitives in the form of special-purpose 
directives or function calls. 

Ê We need two (mixed) approach in 
Architecture: Applications and Hardware 
(system).

Ê Concurrency is a property of systems 
in which several computations are 
executing simultaneously, and 
potentially interacting with each 
other.



Elements of Parallelism
1. Computing Problems

• Numerical (Intensive Computing, Large Data Sets)
• Logical (AI Problems)

2. Parallel Algorithms and Data Structures
Ê Special Algorithms (Numerical, Symbolic)
Ê Data Structures (Dependency Analysis)
Ê Interdisciplinary Action (Due to the Computing Problems)

3. System Software Support
Ê High Level Languages (HLL)
Ê Assemblers, Linkers, Loaders
Ê Models Programming
Ê Portable Parallel Programming Directives and Libraries
Ê User Interfaces and Tools

4. Compiler Support
Ê Implicit Parallelism Approach

Ê Parallelizing Compiler
Ê Source Codes

Ê Explicit parallelism Approach
Ê Programmer Explicitly

Ê Sequential Compilers, Low Level Libraries
Ê Concurrent Compilers (HLL)

Ê Concurrency Preserving Compiler
5. Parallel Hardware Architecture

Ê Processors
Ê Memory
Ê Network and I/O
Ê Storage



Pervasive and Thinking Parallelism

Ê It is not a question of « Parallel Universes » (Almost)

Ê Data Sources

Ê Processing and Treatment

Ê Resources (Available and Desire)

Ê Energy Consumption

Ê Natural “thinking” (Natural Compute?)



Thinking in Parallel (computing) – The Typical Visions



Thinking in Parallel (computing) – an OPL hierarchy

Structural 
Patterns

Computation
al Patterns

Applications

Algorithm Strategy
Patterns

Parallel Algorithm 
Structures

Parallel Machine and 
Execution Models

Performance Analysis
and Optimization

Implementation Strategy 
Patterns

Parallel Program 
Structures

Parallel Execution Patterns



From J. Armstrong Notes: http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Any Parallel System is concurrent: Simulatenous Processing, Parallel but limited ressources.

http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html


Serial vs Concurrent/Parallel Approach 

Reduction in Execution Time (However, overhead problem)
Instructions to Multithreading (To exploit Parallelism)
Syncrhonization (with all derivated concerns...)



Concurrency vs Concurreny/Parallelism Behavior 

Shared Processing Ressources
Switching
Non Parallel Threards (Non Multitasking, Yes 
Multithreading)

Non Shared Processing Ressources (However 
the Memory...)
Switching
Parallel Threards (Multitasking, Multithreading)



Concurrency vs Concurreny/Parallelism Example 

Dual System
- Multiple Parallel Threads in Runtime
- Strategies to Paralellism following models 
(PRAM, LogP, etc) addressed to exploit 
memory and overhead reduction

Single System
- Multiple Threads in Runtime
- Almost Synchronization Strategies
- Memory Allocation



l Sequential Processing

l All of the algorithms we’ve seen so far are 
sequential:
l They have one “thread” of execution
l One step follows another in sequence
l One processor is all that is needed to run 

the algorithm



l Concurrent Systems

l A system in which:
l Multiple tasks can be executed at the 

same time
l The tasks may be duplicates of each 

other, or distinct tasks
l The overall time to perform the series 

of tasks is reduced



l Advantages of Concurrency

l Concurrent processes can reduce 
duplication in code.

l The overall runtime of the algorithm can be 
significantly reduced.

l More real-world problems can be solved 
than with sequential algorithms alone.

l Redundancy can make systems more 
reliable.



l Disadvantages of Concurrency

l Runtime is not always reduced, so 
careful planning is required

l Concurrent algorithms can be more 
complex than sequential algorithms

l Shared data can be corrupted
l Communications between tasks is 

needed



Parallel Computing
l Parallel Computing exploit 

Concurrency
l In “system” terms, concurrency exists 

when a problem can be decomposed in 
sub problems that can safely executed 
at same time (in other words, 
concurrently)

https://ignorelist.files.wordpress.com/2012/01/the-art-of-
concurrency.pdf

https://ignorelist.files.wordpress.com/2012/01/the-art-of-concurrency.pdf


How to Exploit (Better) Concurrency

Ê (Remember) Mixed Approach 
(Algorithms/Applications -
Hardware/System.

Ê Good Techniques from Software 
Engineering 

Ê Good Problem knowledge from 
scientific (domain) expertise

Ê Confrontation and Performance 
Evaluation



The Hardware/System Approach



Shared, Distributed and Hybrid Memory Architectures
l Memory Exploitation involves Memory 

Hierarchy
l Models as PRAM, BSP, etc..

l All modern architectures to HPC allows 
different memory models
l Shared Memory (Inside Nodes)
l Distributed Memory (Among Nodes)
l Hybrid Memory

l Using Accelerators (GPUs, MICs)
l Interaction Nodes/Processors



Flynn’s Taxonomy*

* Proposed by M. Flynn in 1966



The Moore Evolution

Gordon Moore (In the 
60’s)



The (Post) Moore Era

After 120 years… 
The Moore’s Law 

is Dead

Jack Dongarra



Parallel Computing Everywhere

It is more than a publicity!



Parallel Computing Evolution 
(From the LLNL Vision by Rob Neely )

Rob Neely



Configurable Architectures

Dual Cores
(Symmetric Multithreading)

MultiCore
Arrays

Scalar + Many 
Cores

(Highly threaded 
workloads)

Manycore
arrays

Large Scale Cores
(High Single Thread 

Performance)



Further Taxonomy 
(Derivate from MIMD for distributed memory programming)

� SPMD (Single Program, Multiple Data Streams or Single 
Process, Multiple Data)
� Multiple autonomous processors simultaneously executing the 

same program on different data.
� It is the most common taxonomy.

� MPMD (Multiple Program Multiple Data)
� Multiple autonomous processors simultaneously operating at least 

2 independent programs.



The Distributed Shared Memory Access 

� Main Memory in Parallel Machines is a hybrid between shared memory and 
distributed memory.

� Uniform Memory Access (UMA) is proposed for End-User Systems (Generally)
� Distributed memory systems have Non-Uniform Memory Access (NUMA) 

architecture



Multicores
� Multicore Computer:

� Multicore Processor includes 
multiple execution units 
(cores)

� Minimal (Physic) Processing 
unit is the core. The Core 
support processing of threads 
(almost one thread)

� Cache memory is important 
to threads exchange between 
cores and memory.

Dual CPU example



Symetric Multiprocessing
� Symmetric multiprocessors:

� A symmetric multiprocessor (SMP) is a computer system connected
to a main shared memory.

� Intel’s Xeon is the most known SMP system.
� Sun Microsystems UltraSPARC was the first multiprocessing system.

32



Massive Parallel Processing (MPP)
� Computer system with many 

independent arithmetic units or entire 
microprocessors, that run in parallel.

� MPPA is a MIMD (Multiple 
Instruction streams, Multiple Data) 
architecture, with distributed memory 
accessed locally, not shared globally.

� GPGPU Computing exploit MPP.



More of Parallel Computers 
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� Reconfigurable Computing with Field-Programmable Gate
Arrays (FPGA).

� General-Purpose Computing on Graphics Processing Units
(GPGPU).
� Programmin with CUDA and OpenCL (i.e.)

� Application-Specific Integrated Circuits (ASIC).

� Vector Processors. (SIMD)



Distributed Computers
� Distributed computing:

� Distributed Computing is a Distributed Memory 
Multiprocessor System connected by a network.

� Distributed computers are highly scalable!
� Cases of Distributed Computing:

� Cluster computing (Parallel Distributed Computing)

� Grid Computing

35



Large Scale Architectures

36

� Large Scale Architecture (LSA) allows to trait large scale 
problems.
� LSAs need Large Scale Sotware
� LSAs are distributed systems.

� Cluster Computing Platform
� Grid Computing Infrastructure

� The Fault tolerance is a critical problem in LSA systems.



PC/Workstation/
Node

Cluster Computing Architecture

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications

Operating System Operating System Operating System Operating System

Interconnection Network/Switch



An Spain Exemple: BSC-CNS Marenostrum
www.bsc.es

• 11.15 Petaflops
• 384.75 TB Memory 
• 3.465 Computing Nodes

• 2x Intel Xeon Plantium 8160 
24C /2.1Ghz

• 216 Nodes with 12x32GB 
DDR4 2667 DIMMS (8GB 
Cores)

• 3240 Nodes with 12x8GB 
DDR4-2667 DIMMS (2GB 
Cores)

• Network 
• 100Gb Intel Omni-Path Full 

Fat Tree
• 100Gb Ethernet

• Operating System
• Suse Linux Enterprise Server 

12SP2 

http://www.bsc.es/


Grid Computing

� Grid Computing implies technology, technics and methodology to support Parallel*/Distributed 
Computing. 

� Grid Computing needs Grid Computing Infrastructure and dedicated and high disponibility
networks or interconexion.

� Different Types or Possibilities:
� Experimental Testbeds
� Production Grids
� Lightweigth Grids
� Desktop Grid Computing (May be Lightweigth too) 

� Grid Computing is in the back of Cloud Computing Systems (from Infrastructure 
Point of  View)



Grid Computing Feautures

� Grid Computing Features:
� Infrastructure

� High Availability
� High Performance
� Heterogeneity
� Pervasive

� Scalability

� Methodology
� Different User Levels
� Multi Administration

� Politics
� Security
� Use

� Privacy 40http://www.grid5000.fr

http://www.grid5000.fr/
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Grid Computing Architecture 
(Typical Diagram)

[*]From http://gridcafe.web.cern.ch

http://gridcafe.web.cern.ch/


Grid Computing Architecture 
(Remember the Cluster Architecture)
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Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

Interconnection Network/Switch

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications



An Example: The French Aladdin Grid5000 (G5K)
n G5K has 5000 processors distributed in 9 sites France 

wide, for research in Grid Computing, eScience and 
Cyber-infrastructures

n G5K project aims at building a highly reconfigurable, 
controlable and monitorable experimental Grid platform

n All clusters will be connected to Renater with a 10Gb/s 
link (or at least 1 Gb/s, when 10Gb/s is not available 
yet). 

– IntraCluster

n Myrinet
n GigaEthernet / Infiniband

– Grid

n Giga Ethernet (Best case 10GB/s,  Nate case: 
1GB/s)

– Inter-Grid

n Ethernet (~1GB/s)
www.grid5000.org

http://www.grid5000.org/


Volunteer Computing
• Volunteer computing is a type of distributed computing in which 
computer owners donate their computing resources (such as 
processing power and storage) to one or more "projects”.

•BOINC (Seti@home)
•Xgrid
•GridMP

• Associated with P2P
• Can be associated with High Throughput Computing (HTC) or 
High Performance Computing (HCP)



An Example: The BOINC Architecture



� Internet-based computing, 
whereby shared resources, 
software, and information are 
provided to computers and 
other devices on demand.

� Cloud computing describes a 
new supplement, consumption, 
and delivery model for IT 
services based on the Internet, 
and it typically involves over 
the-Internet-provision of 
dynamically scalable and often 
virtualized resources

Cloud Computing

Logical-Services Cloud View



Cloud Computing Visibility

Visit: http://prezi.com/i0sretldeyk7/computacion-en-la-nube-y-sus-implicaciones-para-la-
industria-del-software-en-colombia/

http://prezi.com/i0sretldeyk7/computacion-en-la-nube-y-sus-implicaciones-para-la-industria-del-software-en-colombia/


Cloud Computing Deployment Types
� Private Cloud
� Public Cloud

� Resources are dynamically 
provisioned on a fine-grained, self-
service basis over the Internet, via 
web applications/web services

� Community Cloud
� Established where several 

organizations have similar 
requirements and seek to share 
infrastructure

� Hybrid Cloud
� InterCloud

� Cloud of Clouds Different very known examples: AWS, MS Azure, Google Cloud..



UltraScale Systems

Extends Cloud computing and services to the edge of 
the network

Mesh network of micro data centers that process or store 
critical data locally

« Ultrascale systems are envisioned as large-scale complex systems joining parallel and distributed computing
systems that will be two to three orders of magnitude larger that today’s systems » (Carretero et al.)



HPC Hybrid Systems (HPC@Pocket)

� High Performance Capabilities
� Multiple Cores (i.e. more than 192 cores in Jetson)

� Co-Design Architecture
� Allowing multiple networks and protocols
� Software Implementation Mechanisms (Now, very known, 

i.e. CUDA, OpenCL… same Python)
� Low Power

� Low Cost
� Depending of the device… (≈1 € per core)

� However, Integration/interaction demands efficiency

NVidia® JetsonTK1/TX1



And Now with Jetson Nano®
An Example: NVIDIA Jetson Nano



Integration and 
Interaction

� Typical Protocols
� TCP/UDP
� Interaction with Large Scale Systems

� Redundancy
� Availability 
� Easy Performance Monitoring
� Fault Tolerance

� Embedded O.S.  and Package Management
� Scheduling Resources and Uses (i. e. NIX/NIX OS)
� Containers 

� Fluidity (Data and Applications)

� Micro-Architectures
� Usability

� Interaction with Large Scale Systems with Big Heterogeneous

Application
OS / Sched

Currently is the MSc These of Carlos Gomez (Co-
Advising with O. Richard)



How Exploit HPC Architectures with Cloud Visibility Models?
HPC as A Service Model

Advanced Networking

Monitoring

Processing Ressources Storage Capacity Acceleration

Virtual Ressources

Deployment Images

Secure Access

Frameworks Data Repositories

Application Repositories AppsContainers

Embeebed Resources Clusters

Science Gateways

Customized Applications

Infrastructure
Oriented Services

Developer
Oriented Services

User/Scientist
Oriented Services

Kadeploy, OpenNebula, KVM

SSH

Web Services, Appliances, 
Viz as a Service

Access Apps

* Red Components are (most) concerned at Viz As A Service



GPUCPU

GPGPU Accelerate Computing Architecture
Latency Processor + Throughput processor

More Detailed and Explained in the Thursday Session)



NVIDIA Tensor Cores
Implementation Architecture 

55 D = AB + C

D =

FP16 or FP32 FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3



VOLTA TENSOR OPERATION
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FP16
storage/inp

ut

Full precision
product

Sum with
FP32

accumulator
Convert to
FP32 result

F16

F16
× +

Also supports FP16 accumulator mode for
inferencing

F32

F32

more products



52
V100 measured on pre-production hardware.

Deep Learning Accomplished Promises

Re
la
ti
ve

Pe
rf
or
m
an

ce

P100
(CUDA 8)

V100 – Tensor Cores
(CUDA 9)

9.3x
faster

cuBLAS Mixed Precision
(FP16 input, FP32 compute)
Matrix Multiply (M=N=K=2048)



And… Quantum computing? 
(Advanced Computing Point of view)

§ A quantum computer is a machine that performs calculations based on the laws of quantum 
mechanics, which is the behavior of particles at the sub-atomic level.



Representation of Data  - Qubits
A bit of data is represented by a single atom that is in one of two states denoted by |0> and 
|1>.  A single bit of this form is known as a qubit

A physical implementation of a qubit could use the two energy levels of an atom.  An excited 
state representing |1> and a ground state representing |0>.

Excited 
State

Ground 
State

Nucleus

Light pulse of 
frequency l for 
time interval t

Electron
State |0> State |1>



Representation of Data - Superposition
Light pulse of 

frequency l for time 
interval t/2

State |0> State |0> + |1>

§Consider a 3 bit qubit register.  An equally weighted superposition of all possible 
states would be denoted by:

|y> =     |000> + |001> + . . . +     |111>1
√8

1
√8

1
√8



§Due to the nature of quantum physics, the destruction of information in a gate will cause 
heat to be evolved which can destroy the superposition of qubits.

Operations on Qubits - Reversible Logic

A B   C

0 0 0

0 1 0

1 0 0

1 1 1

Input Output

A

B
C

In these 3 cases, 
information is 
being destroyed

Ex.

The AND Gate

§This type of gate cannot be used.  We must use Quantum Gates.



Quantum Computers Today
� Enterprises produce Quantum Computing

Laboratory Infrastructure (Non for 
production)
� (Real) Quantum Computing (D-Wave, IBM)
� Quantum Computing Simulators (Atos)



Quantum Computing Tomorrow



About Q… Algorithms and Code…

• Consortiums propose 
Quantum Frameworks
– IBM, Microsoft, ATOS
–Quantum Computing

Community…
• However without a good use fo

real Quantum mathematical
abstraction.

Q# Interface



And the software …



Then….. The challenges (Are now for computing 
people not for physicists)
� A « Real » Abstraction of Quantum Architecture

� Quantum Memory (Optimized « in-Memory » System)
� Software/Application Elements

� Definition of a Language with the « Assembly » possibilities
� The Concept of a Operating System

� The « Production » Applications
� Quantum Algorithms
� Quantum Application Design and Code Structure
� The Concept of Optimization (and compilation) in Quantum Computing



The Challenges in Detail: Post 
Moore Era Architectures
� Sustainable-Hybrid Technology

� RISC/CISC
� GPUs, Hybrid ARM/FPGAs, Accelerators, CPUS….
� I/O’s and Memory Management

� The “Data Treatment” Goal
� Large Scale Data Sets (Supported by the Architecture
� However scale capabilities changes
� In-Situ and In-Transit Problem

� Very Known Schedulers, O.S. and Package Management
� However, it is important to observe the architecture

� Exascale constrains
� Computer Efficiency (Energy Consumption / Energy Aware)

A post-moore architecture schema



The Software/Applications Approach



About High Performance Computing

Ê HPC is useful to being faster, more precise overall, to solve large problems and to 
treat, intrinsically, parallelism in essence.

Ê However allows
Ê Technological Advantage
Ê Technological Independency
Ê Competitively
Ê Energy Savings

Ê But, HPC is expensive



What & Why
• What is high performance computing (HPC) from Parallel 

Programming Approach?
• The use of the most efficient algorithms on computers capable of the highest 

performance to solve the most demanding problems.
• Why HPC?

• Large problems – spatially/temporally
• 10,000 x 10,000 x 10,000 grid à 10^12 grid points à 4x10^12 double variables à

32x10^12 bytes = 32 Tera-Bytes.
• Usually need to simulate tens of millions of time steps.
• On-demand/urgent computing; real-time computing;

• Weather forecasting; protein folding; turbulence simulations/CFD; aerospace 
structures; Full-body simulation/ Digital human …

• And Remember the slides 2 and 3…



HPC Examples

Earthquake simulation

Surface velocity 75 sec after earthquake

Flu pandemic simulation
300 million people tracked

Density of infected population, 45 days 
after breakout



HPC Examples: Blood Flow in Human 
Vascular Network
• Cardiovascular disease accounts for about 50% of 

deaths in western world;
• Formation of arterial disease strongly correlated to 

blood flow patterns;

Computational challenges: Enormous 
problem size

In one minute, the heart pumps the entire blood 
supply of 5 quarts through 60,000 miles of vessels, 
that is a quarter of the distance between the moon 
and the earth

Blood flow involves multiple scales



HPC Example: Homogeneous Turbulence

Direct Numerical Simulation of Homogeneous Turbulence: 4096^3

Zoom-in

Zoom-in

Vorticity iso-
surface



How HPC fits into Scientific Computing

Physical Processes

Mathematical Models

Numerical Solutions

Data Visualization,
Validation, 

Physical insight

Air flow around
an airplane

Navier-stokes 
equations

Algorithms, BCs, solvers,
Application codes, 
supercomputers

Viz software

HPC



Advantages	of	Parallelization

• Cheaper, in terms of Price/Performance Ratio
• Faster than equivalently expensive uniprocessor machines 
• Handle bigger problems
• More scalable: the performance of a particular program may be 

improved by execution on a large machine 
• More reliable: In theory if processors fail we can simply use 

others 



How	to	Parallelize?:	Traditional	Way

Designing and Building Parallel Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

However this is not a traditional course…

Actually applied for current well-known 
applications with sequential implementations.

Addressed (mainly) for distributed memory 
applications

It’s good as first approach of scientific computing 
algorithm for (alone) scientists programmers.

http://www.mcs.anl.gov/~itf/dbpp/


Design Spaces of Parallel Programming*

•Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill, 
Software Pattern Series, Addison-Wesley 2004

FC
• Finding Concurrency (Structuring Problem to expose 

exploitable concurrency)

AS
• Algorithm Structure (Structure Algorithm to take 

advantage of Concurrency)

SS
• Supporting Structures (Interfaces between Algorithms 

and Environments)

IM
• Implementation Mechanisms (Define Programming 

Environments)



Concurrent	Programming	General	Steps
1. Analysis

l Identify Possible Concurrency
l Hotspot: Any partition of the code that has a significant amount of activity
l Time spent, Independence of the code…

2. Design and Implementation
l Threading the algorithm 

3. Tests of Correctness
l Detecting and Fixing Threading Errors

4. Tune of Performance
l Removing Performance Bottlenecks 

l Logical errors, contention, synchronization errors, imbalance, excessive overhead
l Tuning Performance Problems in the code (tuning cycles)  

• From: Patterns for Parallel Programming., by T. Mattson., B. 
Sanders and B. MassinGill (Ed. Addison Weslley, 2009) Web 
Site: http://www.cise.ufl.edu/research/ParallelPatterns/

http://www.cise.ufl.edu/research/ParallelPatterns/


Distributed Vs. Shared Memory Programming 
(Remember Architecture Features)

Common Features

Ê Redundant Work

Ê Dividing Work

Ê Sharing Data (Different Methods)

Ê Dynamic / Static Allocation of Work 
Ê Depending of the nature of serial algorithm, 

resulting concurrent version, number of threads / 
processors 

Only to Shared Memory

Ê Local Declarations and Thread-Local Storage

Ê Memory Effects:
Ê False Sharing

Ê Communication in Memory

Ê Mutual Exclusion

Ê Producer / Consumer Model

Ê Reader / Writer Locks (In Distributed Memory is 
Boss / Worker) 



Decomposition

Tasks Decomposition : Task Parallelism
Data Decomposition: Data Parallelism /Geometric Parallelism



Task Parallelism : What are the tasks and how are 
defined?

Ê There should be at least as many tasks as there will be threads (or cores)
Ê It is almost always better to have (many) more tasks than threads.

Ê Granularity must be large enough to offset the overhead that will be 
needed to manage the tasks and threads
Ê More computation: higher granularity (coarse-grained)

Ê Less Computation: lower granularity (fine-grained)

Granularity is the amount of computation done before synchronization is 
needed



Task	Granularity

Core 0

overhead

task

overhead

task

overhead

task

Core 1 Core 2 Core 0

overhead

task

Core 1 Core 3

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

Fine-grained decomposition Coarse-grained decomposition



Higher Performance
Lower Accuracy
(Using Nodes)

Coarse grid

Lower Performance
Higher Accuracy

(Using Processors)

Fine grid Dynamic grid

Target performance where 
accuracy is required
(Using Processors and 

Nodes)

Granularity	in	Implementations



Tasks must be assigned to threads for 
execution

Task	Decomposition	
Considerations

• What are the tasks and how are defined?
• What are the dependencies between task 

and how can they be satisfied?
• How are the task assigned to threads?

Tas
k

Tas
k

Jo
b



Task	Dependencies

Order Dependency Data Dependency

Enchantingly Parallel Code: Code without dependencies 

Process 1

Process 2

Out

in In 1 In 2

Process 1

Process 3

Process 2

Out 1 Out 2

Process 3

Out



Data	Decomposition	
Considerations
(Geometric	Decomposition)	

Data Structures must be (commonly) divided in arrays or logical 
structures.

- How should you divide the data into 
chunks?
- How should you ensure that the tasks for 
each chunk have access to all data 
required for update?
- How are the data chunks assigned to 
threads?



How are the data chunks (and tasks) 
assigned to threads?

Ê Data Chunks are associated with tasks and are assigned to threads statically or 
dynamically

Ê Via Scheduling
Ê Static: when the amount of computations within tasks is uniform and predictable

Ê Dynamic: to achieve a good balance due to variability in the computation needed by 
chunk
Ê Require many (more) tasks than threads.



How	should	you	divide	data	into	chunks?

By individual elements By rows

By groups of columns By blocks



• Data Decomposition have an additional dimension.
• It determines what the neighboring chunks are and how any 

exchange of data will be handled during the course of the chunk 
computations.

2 Shared Borders

• Regular shapes : Common Regular data organizations.
• Irregular shapes: may be necessary due to the irregular 

organizations of the data.

5 Shared Borders

The	Shape	of	the	Chunk



How	should	you	ensure	that	the	tasks	for	each	chunk	have	
access	to	all	data	required	for	update?

• Using Ghost Cells
l Using ghost cells to hold copied data from a neighboring chunk.

Original split with ghost cells

Copying data into ghost cells



Data Sharing Pattern

Ê Data decomposition might define some data that must be shared among the tasks.

Ê Data dependencies can also occur when one task needs access to some portions of 
the another task’s local data.
Ê Read Only

Ê Effectively Local (Accessed by one of the tasks)

Ê Read Write
Ê Accumulative

Ê Multiple read / Single Write



Tasks	and	Domain	Decomposition	
Patterns
• Task Decomposition Patterns
l Understand the computationally intensive parts of the problem.
l Finding Tasks (as much…)

l Actions that are carried out to solve the problem
l Actions are distinct and relatively independent.

• Data Decomposition Patterns
l Data decomposition implied by tasks.
l Finding Domains:

l Most computationally intensive part of the problem is organized around the manipulation of large 
data structure.

l Similar operators are being applied to different parts of the data structure.
l In shared memory programming environments, data decomposition will be implied by task 

decomposition (To see in detail in the OpenMP session).



Concurrent Computation from Serial 
Codes

ÊSequential Consistency 
Property: Getting the 
same answer as the serial 
code on the same input 
data set, comparing 
sequence of execution in 
concurrent solutions of 
the concurrent 
algorithms.

in P out

in P out

P

P

Sequential Version

Parallel / Concurrent  Version



Not	Parallelizable	Jobs,	Tasks	and	Algorithms

• Algorithms with state
• Recurrences
• Induction Variables
• Reductions
• Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering.  By Fred Brooks. Ed 
Addison-Wesley Professional, 1995 



Concurrent Design Models Features

Ê Efficiency
Ê Concurrent applications must run quickly and make good use of processing resources.

Ê Simplicity
Ê Easier to understand, develop, debug, verify and maintain.

Ê Portability
Ê In terms of threading portability.

Ê Scalability
Ê It should be effective on a wide range of number of threads and cores, and sizes of data 

sets.



Design Evaluation Pattern

ÊProduction of analysis and decomposition:
Ê Task decomposition to identify concurrency
Ê Data decomposition to indentify data local to each task
Ê Group of task and order of groups to satisfy temporal constraints
Ê Dependencies among tasks

ÊDesign Evaluation
Ê Suitability for the target platform
Ê Design Quality
Ê Preparation for the next phase of the design 



Algorithm Structures

Ê Organizing by Tasks
Ê Task Parallelism

Ê Divide and Conquer

Ê Organizing by Data Decomposition
Ê Geometric Decomposition

Ê Recursive Data

Ê Organizing by Flow of Data
Ê Pipeline

Ê Event-Based Coordination



Algorithm Structure Decision Tree 
(Major Organizing Principle)

Start

Organize By Tasks

Linear

Task 
Parallelism

Recursive

Divide and Conquer

Organize By Data Decomposition

Linear

Geometric 
Decomposition

Recursive

Recursive Data

Organize By Flow of Data

Linear

Pipeline

Recursive

Event-Based 
Coordination



Divide and Conquer Strategy
Problem

Subproblem Subproblem Subproblem Subproblem

Subsolution Subsolution Subsolution Subsolution

Subproblem Subproblem

Subsolution Subsolution

Solution

split

split split

Solve Solve Solve Solve

Merge

MergeMerge



Divide and Conquer Parallel  Strategy

split

base-
case 
solve

base-
case 
solve

merge

split

base-
case 
solve

base-
case 
solve

merge

split

merge
Each dashed-line box represents a task



Recursive Data Strategy

Ê Involves an operation on a recursive data 
structure that appears to require sequential 
processing:
Ê Lists
Ê Trees
Ê Graphs

Ê Recursive Data structure is completely 
decomposed into individual elements.

Ê Structure in the form of a loop (top-level 
structure)

Ê Simultaneously updating all elements of 
the data structure (Synchronization)

Ê Examples:
Ê Partial sums of a linked list.

Ê Uses:
Ê Widely used on SIMD platforms (HPF77)
Ê Combinatorial optimization Problems.
Ê Partial sums 
Ê List ranking
Ê Euler tours and ear decomposition
Ê Finding roots of trees in a forest of rooted 

directed trees.



Pipeline Strategy

Ê Involves performing a calculation on 
many sets of data, where the calculation 
can be viewed in terms of data flowing 
through a sequence of stages
Ê Instruction pipeline in modern CPUs

Ê Vector Processing (Loop-level 
pipelining)

Ê Algorithm-level Pipelining

Ê Signal Processing

Ê Graphics

Ê Shell Programs in Unix



Event-Based Coordination Strategy

Ê Application decomposed into groups 
of semi-independent tasks 
interacting in an irregular fashion.

Ê Interaction determined by a flow of 
data between the groups, implying 
ordering constraints between the 
tasks

1

2

3



SomeConclusions

Ê High Performance Computing allows science and mathematics dreams and implementations… i.e. Artificial 
Intelligence Implementation, data analytics, blockchain and more…

Ê Computer systems involve different technologies and hybrid architectures, demanding sustainability, dynamicity 
and they need support changes in the scale of data and processing…. And all processing in parallel.
Ê Of course, observing requirements of the applications and large scale behavior (i.e. IoT platforms)

Ê Power consumption, energy aware and computational efficiency reach sustainability. It is proposed from the design 
of the architecture and it must be dynamic.
Ê Exascale challenges : Co-Design 

Ê Big and little (embedded) HPC Architectures with the same challenges (memory contention, stable speed – up, 
parallel coherence) follows same kind of solutions, but with different scale of treatment observing the data level.
Ê Involving Software Engineering, Computer Architecture, Data Analytics and Performance Evaluation.

Ê HPC is expensive (but It is more expensive to not have HPC Knowledge and Resources)

Ê Parallel Computing is not a tendency. (From 2015 is mandatory in all universities and colleges in USA parallel 
computing, scientific computing and advanced computing courses in science and engineering programs 
(programming computing is mandatory also in high school from 2009).



Recommended	Lectures

• The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel Applications”, by 
Clay Breshears (Ed. O Reilly, 2009)

• Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s Blog: 
http://www.informit.com/articles/article.aspx?p=1626979 )

• Patterns for Parallel Programming., by T. Mattson., B. Sanders and B. MassinGill (Ed. 
Addison Weslley, 2009) Web Site: http://www.cise.ufl.edu/research/ParallelPatterns/

• Designing and Building Parallel Programs, by Ian Foster in 
http://www.mcs.anl.gov/~itf/dbpp/

• Lectures in the site: www.sc-camp.org

http://www.informit.com/articles/article.aspx?p=1626979
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.mcs.anl.gov/~itf/dbpp/
http://www.sc-camp.org/


Class		work
• Revision of Chapter 2 of Designing and Building Parallel 

Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/
• Solve in the Exercises  Section the 1 and 2 numerals.
• Imagine a solution for a real-world high complex problem to 

solve in the campus (conceptually)
• Read 

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_a
mdahl_multicore.pdf

http://www.mcs.anl.gov/~itf/dbpp/
http://www.linkedin.com/redirect?url=http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf&urlhash=kMoM&_t=tracking_disc


Questions?
Follow us: @SuperCCamp
Or visit: www.sc-camp.org

#SCCAMP2021

http://www.sc-camp.org/

