Introduction to HPC Applications

The Need of Scalable Architectures and more

Carlos Jaime Barrios Hernandez, PhD
: @carlosjaimebh

#SCCAMP2021

The (Big) Questions: What and How?

s

wmmmmu _

Ll i 7
mrww "ﬂm

—>

COLLABORATION

Large Data Sets

Complex Mathematics
Complex Models

Real Time

Interaction and Confrontation
Large Scale Visualization
High Resolution

High Performance and Capacity
* VR Needs

e BigDataand Deep Learning

Big Problems, Smart Solutions

Infrastructure

High Performance
(Computing) Knowledge

Challenges

Infrastructure Platform Applications

‘-.\,‘ . ™
& l:‘ Post Moore Era Architectures l:‘ Programmability l:‘ |A and Deep Learning

* Parallel Balancing, 1/0, Memory Challenges * New Languages and Compilers

l:‘ Dark Sillico l:‘ Computing Efficiency l:‘ Algorithms Implementation
l:‘ Exascale Data Movement and Processing (In Sity, In l:‘ Use of Interpretators (as Python)
* Computer Efficiency (Processing/Energy Consumption) Transit, Workflows)
l:‘ Hybrid Platforms (CISC+RISC+Others) l:‘ HPC as a Service l:‘ Community versions
* TPUs, ARM... * Science Gateways, Containers
l:‘ Data Management l:‘ Viz as a Service (In Situ) I:l Open Algorithms, Open Data
l:‘ Advanced Networks l:‘ Protocols I:l Utra Scale Applicatons
l:‘ Fog/Edge l:‘ IA and Deep Learning Frameworks |:| ...and more!
l:‘ HPC@Pocket l:‘ Quantum Computing

l:‘ ... Quantum Computing

About Parallelism

Implicit parallelism is a characteristic of a
programming language that allows a
compiler or interpreter to automatically
exploit the parallelism inherent to the
computations expressed by some of the
language's constructs.

Explicit parallelism is the representation
of concurrent computations by means of
primitives in the form of special-purpose

Concurrency is a property of systems directives or function calls.

in which several computations are _ _
executing simultaneously, and We need two (mixed) approach in
potentially interacting with each Architecture: Applications and Hardware

other. (system).

id

E

B'.

Elements of Parallelism

Computing Problems
Numerical (Intensive Computing, Large Data Sets)
Logical (Al Problems)

Parallel Algorithms and Data Structures
Special Algorithms (Numerical, Symbolic)
Data Structures (Dependency Analysis)
Interdisciplinary Action (Due to the Computing Probler
System Software Support
High Level Languages (HLL)
Assemblers, Linkers, Loaders
Models Programming
Portable Parallel Programming Directives and Libraries
User Interfaces and Tools
Compiler Support
Implicit Parallelism Approach

Parallelizing Compiler
Source Codes

Explicit parallelism Approach
Programmer Explicitly
Sequential Compilers, Low Level Libraries
Concurrent Compilers (HLL)
Concurrency Preserving Compiler
Parallel Hardware Architecture
Processors
Memory
Network and /0

Storage

Application

Computing Problems Coftworo

Algorithm and Data
Structures

Programming

Languages

Operating
System

Hardware
Architecture

Performance
Evaluation

Pervasive and Thinking Parallelism

It is not a question of « Parallel Universes » (Almost)
Data Sources

Processing and Treatment

Resources (Available and Desire)

Energy Consumption

Natural “thinking” (Natural Compute?)

Thinking in Parallel (computing) — The Typical Visions

Traditional Sequential Processing

§§§§§§§\ e

| 23334337

Concurrent: 2 queues, 1 vending machine

TEYELEN -
1323454~

Parallel: 2 queues, 2 vending machines

Thinking in Parallel (computing) — an OPL hierarchy

Structural j| Computation Applications
Patterns al Patterns
Algorithm Strategy Parallel Algorithm Parallel Machine and Performance Analysis
Patterns Structures Execution Models and Optimization
e
Implementation Strategy Parallel Program
Patterns Structures
Parallel Execution Patternsl

CONCURRENCY | PARALLELISM

Concurresk = Tuwe Quanes Osa Coffen fading Concurrent application N
EARLERAREAN o % |
331228223322 —
T ok
Fa(\ul\ = MTwe Queawes (we C'(C“ {“!Gc(k"‘q

He

% 1 ‘l; 1 i t 33 i, '7; 2 — :
@ Parallel application

231323 32233 —s
Q_)..Aq\‘r\g 2018

From J. Armstrong Notes: http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Y
ﬂ

Any Parallel System is concurrent: Simulatenous Processing, Parallel but limited ressources.

http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Serial vs Concurrent/Parallel Approach

problem instructions

problem
|
t1

e
~

_ 1 instructions
tN

t3 t2
IN t3 t2 t1

Reduction in Execution Time (However, overhead problem)
Instructions to Multithreading (To exploit Parallelism)
Syncrhonization (with all derivated concerns...)

Concurrency
(Without

Parallelism

Parallelism)

Concurrency vs Concurreny/Parallelism Behavior

/rhreoé \
4‘, \‘: ’rhreod 2

Non Shared Processing Ressources (However
the Memory...)

Switching

Parallel Threards (Multitasking, Multithreading)

Shared Processing Ressources

Switching

Non Parallel Threards (Non Multitasking, Yes
Multithreading)

Concurrency vs Concurreny/Parallelism Example

ingle CP Dual CP
SHgisicEY i Single System
_— o df’ o - Multiple Threads in Runtime
. - ¢ g - Almost Synchronization Strategies
N ZI $ I Thread 3 - Memory Allocation
Thread 1
| ! 4
Y ThreadSL
Thread 3

Thread II 1

Dual System
Thread 3 - Multiple Parallel Threads in Runtime

- Strategies to Paralellism following models

v . (PRAM, LogP, etc) addressed to exploit
e Time memory and overhead reduction

. Sequential Processing

. All of the algorithms we’ve seen so far are

| i (sequential:

‘é\f; &A‘é (‘ (‘fﬁ (i Q; | . They have one “thread” of execution

Y 2 3 % %’ LR - One step follows another in sequence

« One processor is all that is needed to run
the algorithm

. Concurrent Systems

i

« A system in which:
« Multiple tasks can be executed at the
same time
. The tasks may be duplicates of each
other, or distinct tasks
« The overall time to perform the series
of tasks is reduced

. Advantages of Concurrency

« Concurrent processes can reduce
duplication in code.
. The overall runtime of the algorithm can be
— significantly reduced.
« More real-world problems can be solved
than with sequential algorithms alone.
« Redundancy can make systems more
reliable.

. Disadvantages of Concurrency

« Runtime is not always reduced, so
careful planning is required

« Concurrent algorithms can be more
complex than sequential algorithms

« Shared data can be corrupted

« Communications between tasks is

heeded

~ Parallel Computing exploit
Concurrency

 In “system” terms, concurrency exists
when a problem can be decomposed in

sub problems that can safely executed ¥ Tho 4 Art of Con |
. . AThread Mo, 'S Guide 1oy, Urr J‘

at same time (in other words, / | % ‘A‘::‘,”,Cy /

concurrently) —

https://ignorelist.files.wordpress.com/2012/01/the-art-of-
concurrency.pdf

https://ignorelist.files.wordpress.com/2012/01/the-art-of-concurrency.pdf

How to Exploit (Better) Concurrency

(Remember) Mixed Approach
(Algorithms/Applications -
Hardware/System.

— Good Techniques from Software
Engineering

Good Problem knowledge from
scientific (domain) expertise

Confrontation and Performance
Evaluation

The Hardware/System Approach

Shared, Distributed and Hybrid Memory Architectures

« Memory Exploitation involves Memory
Hierarchy
o Models as PRAM, BSP, etc..
« All modern architectures to HPC allows
different memory models
« Shared Memory (Inside Nodes)
« Distributed Memory (Among Nodes)
« Hybrid Memory
 Using Accelerators (GPUs, MICs)
o Interaction Nodes/Processors

Flynn’s Taxonomy*

SISD I Instruction Pool I MISD | Instruction Pool
E 2
(=™
s =
=]
a a

hs.« SIMD Instruction Pool MIMD | Instruction Pool |
PU|— —.[pul+ L-[pu]—
E PU | 2|—[pul- L.[pu]-
= =
= PU |+ E|—pul4 L-[pu]
PUJ~ —.Trul- L[pul

* Proposed by M. Flynn in 1966

The Moore Evolution

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SUSEE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. Ll
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20,000,000,000

IBM z13 Storage Controller. SPARG M7 A
1 0,000,000,000 18-core Xeon Haswell-E5
Xbox One main Soc\\\ €22-core Xeon Broadwell-E5
5 000 OOO 000 61-core Xeon Phi 8/15 core Xeon vy Bridge-EX
’ ’ ’ 12-core POWER
8-core Xeon Nehalem- EX\ gApple Ag)(trl core AFIiMGA "mobile SoC")
Six-core Xeon 7400 -core Core i7 Haswel
Duo-core + GPU Iris Core i7 Broadwell-U
Dual-core ltanium 2¢p @ Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 Pentium D Presler\ poweRe g < ’ Quad core + GPU Core i7 Haswell
’ ’ ’ Itanium 2 with ° Apple A7 (dual-core ARM64 "mobile SoC")
500,000,000 S Mocacho® AMBKI0 Qi core 2M L3
’ ’ Itanium 2 Madison 6M€p QY I

Core 2 Duo Wolfdale
Pentium D Smithfield Core 2 Duo Conroe
Itanium 2 McKinley © cCell Core 2 Duo Wolfdale 3M
Pentium 4 Prescott- 2M° \\QCore 2 Duo Allendale
Pentium 4 Cedar Mill

1 O0,000,000 AMD K8° Pentium 4 Prescott
Pentium 4 North
E 50’0001000 Pentium jr:/\}ﬁlr;qmettgowooc;,dot 03?[:0”' i QAtom
S Pentium Il Mobile Dixon. siptum D ueiati @AHM Corthx-a9
8 AMD K7 oPentlum Il Coppermine QLS
S AMD K-l
£ 10,000,000 - Pr:‘::D Kje%ugp"?Sm'H*Bé's'cmaJ@é'
% 5,000,000 Pentlum° " Iégmath
= SAY110
- Intel 80486, o
1,000,000 © R4000
500,000 S aachind Shp @ =00
Intel 80386° Intel ©ARM 3
Motorola 68020 € g ow
-3 DEGC W
1 00,000 Wisiooi Intel 80286 MultlTltan AgM
680004y 9TDMI
50,000 ©intel 80186
Intel 8086€¢p €Y Intel 8088 QAFXAA:?M 2 AR% 6
e
10,000 T™MS1000 Zilog Z8Q Mgtggorgla WgC 65C816N’\‘c%'6)§6
RCA 1802 65C02
5,000 | e 8008 - 0% abRn
© Mot’ ola MOS Technology
Intel 4?04 6800 oo
1,000
OO > W S H PSPPSRI FFFFSEST TP >0 Gordon Moore (In the
N N N T N N N N N I N\ L A NN S SR S SIS SIS SIS SR S N

_ _ 60's)
Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

Calculations per second per constant dollar

The (Post) Moore Era

ANALYTICAL

ENGINE

HOLLERITH
TABULATOR

MECHANICAL

IBM TABULATOR

VACUUM
TUBE

RELAY TRANSISTOR

IBMPC §
CRAY 1
DATA GENERAL L AN
NOVA @ ® SUN1 MACIN
® ® o°
@ W
f ®
WHIRLWIND .
E":AC ’ ® 1BM 360
DEC PDP-1
ge ® o0
®]
coossus @ ® e
&)

INTEGRATED CIRCUIT

GTX 480 ..
P o
)

IBM BLUE GENE

@
POWER ®

MAC .“

o3

®
IBM ASCI
WHITE
@

PENTIUM PC

4

NVIDIA TITAIL

7900 /905 /9,0 /9,5 /920 /935 /930 /935 79<,0 /945 7950 7955 7960 /965 79)0 /9;5 /980 /985 /990 7995 2000 2005 ?0;0 2075 2030

L]

L}

L) L) L] L] L} L) L} L) L] L)

Year

L) L] L) L] L)

Source: Ray Kurzweil, DFJ

L]

Jack Dongarra

Parallel Computing Everywhere

It is more than a publicity!

Parallel Computing Evolution
(From the LLNL Vision by Rob Neely)

- Advancements in (High Performance)
Computing Have Occurred in Several Distinct
“Eras”

o 1.00E+17 Many Core Era
=
o
8 1.00E+16
[T
o
1.00E+15 i
3 1.00E+14 BlueGenelL — Truth is: we
e g don’t what
‘;é White .
8 1eE3 to call this
Blue Pacific e
100E+12 next era. It’s
PO 1952 currently
[3 b .
3 / defined by
g 1.00E+10 - - . . afs
. : / Distributed Memory Era (MPP) its inability
1.00E+09 to be
L e / deTined:?
/
é’ 1.00E+07 Vector Era
1.00E+06
QD
i 1.00E+05 -
o
3
E 1.00E+04 -
peak 1'005‘03»\. I * 8 N e 'S > PN S Y 5 & A &
(flops) & & & " g»“s’ o&é & & - o vﬁ s >‘§§, g a2 PO & & df £ & v*’“'\

Each of these eras define not so much a common hardware architecture,
but a common programming model Rob Neely

‘ . . T VAN =35
Lawrence Livermore National Laboratory LLNL-PRES-657110 NI A A 2

Configurable Architectures

Scalar + Many

Dual Cores Cores Manycore

(Symmetric Multithreading) (Highly threaded a rra yS
workloads)

N
NVIDIA.

(=]
(W)
(o =
L
=
o
a.
=

Further Taxonomy

(Derivate from MIMD for distributed memory programming)

® SPMD (Single Program, Multiple Data Streams or Single
Process, Multiple Data)

Multiple autonomous processors simultaneously executing the

same program on different data.

It is the most common taxonomy.

* MPMD (Multiple Program Multiple Data)

Multiple autonomous processors simultaneously operating at least

2 independent programs.

The Distributed Shared Memory Access

r’rocessor r’rocessor IProcessor IProcessor IProcessor IProcessor Frocessor Frocessor
Bus Bus
Memory Memory

— =

Distributed shared memory

network with directory

® Main Memory in Parallel Machines is a hybrid between shared memory and
distributed memory.

® Uniform Memory Access (UMA) is proposed for End-User Systems (Generally)

* Distributed memory systems have Non-Uniform Memory Access (NUMA)
architecture

s

Multicores

® Multicore Computer:

® Multicore Processor includes
multiple execution units
(cores)

® Minimal (Physic) Processing
unit is the core. The Core
support processing of threads
(almost one thread)

® Cache memory is important
to threads exchange between
cores and memory.

Dual CPU Core Chip

N\ [
CPU Core CPU Core
and and
L1 Caches L1 Caches
J _

r

Bus Interface

and

L2 Caches

~

Dual CPU example

== bt
*"'.'«?i

& 1

o
an
.

B

i s
o = g% EIIY

Symetric Multiprocessing

® Symmetric mUItipI'OCQSSOI'SZ

A symmetric multiprocessor (SMP) is a computer system connected

to a main shared memory.
Intel’s Xeon is the most known SMP system.,

Sun Microsystems UltraSPARC was the first multiprocessing system.,

CPU CPU CPU

pd BUS OR CROSSBAR P

MEMORY /

32

Massive Parallel Processing (MPP)

* Computer system with many

From Computer Desktop Encyclopedia
© 1998 The Computer Language Co. Inc.

independent arithmetic units or entire

microprocessors, that run in parallel.

e MPPA is a MIMD (Multiple

Instruction streams, Multiple Data)

IS RAM chips
L | | S (SIMMs)

App

architecture, with distributed memory

accessed locally, not shared globally.
* GPGPU Computing exploit MPP.

34

More of Parallel Computers

° Reconfigurable Computing with Field—Programmable Gate
Arrays (FPGA).

° General—Purpose Computing on Graphics Processing Units

(GPGPU).
® Programmin with CUDA and OpenCL (i.e.)

* Application-Specific Integrated Circuits (ASIC).
® Vector Processors. (SIMD)

Distributed Computers

® Distributed computing:

® Distributed Computing is a Distributed Memory

Multiprocessor System connected by a network.
* Distributed computers are highly scalable!
® C(ases of Distributed Computing:

Cluster computing (Parallel Distributed Computing)
Grid Computing

35

36

Large Scale Architectures

® Large Scale Architecture (LSA) allows to trait large scale
problems.
* LSAs need Large Scale Sotware

o [SAs are distributed systems.
Cluster Computing Platform

Grid Computing Infrastructure

* The Fault tolerance is a critical problem in LSA systems.

e
Cluster Computing Architecture

Parallel Applications
Parallel Applications

Parallel Programming Environment

Operating System Operating System Operating System Operating System

o _— D Communications
Communications Communications Communications

Software
Software Software Software

Interconnection Network/Switch

" An Spain Exemple: BSC-CNS Marenostrum
WWW.DSC.€es

—

* 11.15 Petaflops
* 384.75TB Memory
* 3.465 Computing Nodes

* 2x Intel Xeon Plantium 8160
24C /2.1Ghz

* 216 Nodes with 12x32GB
DDR4 2667 DIMMS (8GB
Cores)

* 3240 Nodes with 12x8GB
DDR4-2667 DIMMS (2GB
Cores)

Network

* 100Gb Intel Omni-Path Full
Fat'Tree

* 100Gb Ethernet

° Operating Systern
* Suse Linux Enterprise Server

125P2

/

http://www.bsc.es/

e
Grid Computing

* Grid Computing implies technology, technics and methodology to support Parallel*/Distributed
Computing.
* Grid Computing needs Grid Computing Infrastructure and dedicated and high disponibility

networks or interconexion.
* Different Types or Possibilities:
Experimental Testbeds
Production Grids
Lightweigth Grids
Desktop Grid Computing (May be Lightweigth too)

e Grid Computing 1s in the back of Cloud Computing Systems (from Infrastructure
Point of View)

e

Grid Computing Feautures

http: // www.gridSOOO Ar

Grid Computing Features:

Infrastructure
® High Availability
® High Performance
® Heterogeneity
® Pervasive

° Scalability

Methodology

¢ Different User Levels

¢ Multi Administration

Politics

° Security
o Use

o Privacy

40

http://www.grid5000.fr/

41

Grid Computing Architecture
(Typical Diagram)

P g—n

fr € EES

Unix
and 0GSA
CoRaboration Infoemation Hosting IPm,
and Remote Service [:
Instrument :

Storage I Serveurs... ~ ' ‘\ \

Supercomputer

_-.,%wn SONET/SDM dtet
WD W%

q oyt
Switches — Routers

http://gridcafe.web.cern.ch/

42

Grid Computing Architecture
(Remember the Cluster Architecture)

BT

Parallel Programming Environment

Interconnection Network/Switch

e
An Example: The French Aladdin Grid5000 (G5K)

m G5K has 5000 processors distributed in 9 sites France
wide, for research in Grid Computing, eScience and
Cyber—infrastructures

® G5K project aims at building a highly reconfigurable,

controlable and monitorable experimental Grid platform

B All clusters will be connected to Renater with a 10Gb/s

- //'O link (or at least 1 Gb/s, when 10Gb/s is not available

== o \"‘---_I yet).

|‘ !

St o /' — IntraCluster
§ Application " \ ® Myrinet
§ Programming Environment § | O \ . ..
i T : O @) l' ® GigaEthernet / Infiniband
: : : H f >) :
3 | Grid or P2P Middleware | £ { O — Grid
g Operating System § -_9 C - Gioa Eth B 10GB/s. N
§ Networking b3 N ® (iga Ethernet (Best case s, INate case:

1GB/s)
— Inter-Grid

® Ethernet (~1GB/5s)

http://www.grid5000.org/

Volunteer Computing

® Volunteer computing is a type of distributed computing in which

computer owners donate their computing resources (such as

processing power and storage) to one or more "projects”.
*BOINC (Seti(@home)

'Xgrid
*GridMP _
® Associated with P2P V
X ~ 4

* Can be associated with High Throughput Computing (HTC) or
High Performance Computing (HCP)

An Example: The BOINC Architecture

Server

MySQL
DB

duler

She
(C++)

YWeb Site
(PHP)

v

5

Data
envers

(HTTP)

Client

" Brfinc

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Cloud Computing

* Internet-based computing,
whereby shared resources,
software, and information are
provided to computers and
other devices on demand.

* Cloud computing describes a
new supplement, consumption,
and delivery model for IT
services based on the Internet,
and it typically involves over
the-Internet-provision of
dynamically scalable and often
virtualized resources

> - -
- —_ , — . 4
- \' - D= : o /
VN | Salesforce _ . N\
- Y / Microsoft |
[| Google | " /o
\ T \ S/ o
N | The cloud 1N
/ ‘ ..'.‘-—— ——— » '. I
\,7'(,_ whoo | | Amazon .| /
W\ 2oho | — A
— . -
N Rackspace . —
— //\. — __---r'-“-.‘____ L fJo— Y
- - -

Logical—SerVices Cloud View

Cloud Computing Visibility

A
Saas @Usu lo Final
P d as ,;‘ Desarrollador

\IQQ{GArquitecto de Sistema

Visit: http: //prezi.com/ i0sretldevk7/ Computacion—en—la—nube—V—sus—implicaciones—para—la—

industria-del-software-en-colombia/

http://prezi.com/i0sretldeyk7/computacion-en-la-nube-y-sus-implicaciones-para-la-industria-del-software-en-colombia/

Cloud Computing Deployment Types

Private Cloud Worid] SN\
T) TN
PUbliC ClOUd Private/ / LA N\
. Intemal - Public/ | — .) /)
Resources are dynamlcally \ External / \

provisioned on a fine-grained, self-
service basis over the Internet, via
web applications/web services

Community Cloud

On Premises / Internal Off Premises / Third Party

Established where several Cloud Computing Types ...

organizations have similar
requirements and seek to share
infrastructure

Hybrid Cloud

InterCloud

Cloud of Clouds Different very known examples: AWS, MS Azure, Google Cloud..

UltraScale Systems\

Fog Computing Architecture

-2 0 8 —
Qe T &
a ?.“‘e xlwm | g n a
~cr Cloud
o = .

:
-

i I IS Dy
Cloud computing S |
| ca o ca

- Edge computing. - g‘—

loT Devices / Sensors

Mesh network of micro data centers that process or store Extends Cloud computing and services to the edge of
critical data locally the network

« Ultrascale systems are envisioned as large—scale complex systems joining parallel and distributed computing
_d N E S U S systems that will be two to three orders of magnitude larger that today’s systems » (Carretero et al.)
VCDSE 1€1305

ustaing Comput

™
HPC Hybrid Systems (HPC@Pocket)

High Performance Capabilities
Multiple Cores (i.e. more than 192 cores in Jetson)
Co-Design Architecture

Allowing multiple networks and protocols

Software Implementation Mechanisms (Now, very known,

i.e. CUDA, OpenCL... same Python)

L.ow Power

Low Cost NVidia® Jetson TK1/TX1

Depending of the device... (=1 € per core)

However, Integration/interaction demands efficiency

An Example: NVIDIA Jetson Nano
JETSON NANO SPECIFICATIONS

GPU

CPU
Memory

Storage

Video Encode
Video Decode
Camera
Display

UPHY

SDIO/SPI/SyslOs/GPI
Os/12C

128 Core Maxwell
472 GFLOPs (FP16)

4 core ARM A57 @ 1.43 GHz
4 GB 64 bit LPDDR4 25.6 GB/s
16 GB eMMC

4K ® 30 | 4x 1080p @ 30 | 8x 720p @ 30
(H.264/H.265)

AK@60 | 2x 4K @ 30 | 8x 1080p @ 30 | 16x 720p @
30 | (H.264/H.265)

12 (3x4 or 4x2) MIPI CSI-2 DPHY 1.1 lanes
(1.5 Gbps)

HDMI 2.0 or DP1.2 | eDP 1.4 | DSI (1 x2)
2 simultaneous

1 x1/2/4 PCIE
1 USB 3.0

1x SDIO / 2x SPI / 5x SyslO / 13x GPIOs / 6x 12C

N A

a Integration and
Interaction

° Typical Protocols
e TCP/UDP

¢ Interaction with Large Scale Systems

* Redundancy
L Availability
° Easy Performance Monitoring

¢ FaultTolerance

® Embedded O.S. and Package Management
® Scheduling Resources and Uses (i. e. NIX/NIX OS)

¢ (Containers
Fluidity (Data and Applications)
Micro-Architectures

Usability

¢ Interaction with Large Scale Systems with Big Heterogeneous

Application
PP OS / Sched

Currently is the MSc These of Carlos Gomez (Co-
Advising with O. Richard/)

Super Computacion y '
Calculo Cientifico UIS

1

7 How Exploit HPC Architectures with Cloud Visibility Models™
HPC as A Service Mode

* Red Components are (most) concerned at Viz As A Service —_—
Customized Applications
User/ Scientist
Web Services, Appliances, Oriented Services
Viz as a Service
I —— >—
Secure Access
Developer
Orentod Serices
Deployment Images ——
Kadeploy, OpenNebula, KVM
[P _
Embeebed Resources Clusters — Infrastructure

Advanced Networking Orlented SeerceS

Super Computacién y Universidad de - = X ra
Calculo Cientifico UIS los Andes &z, D S CA‘:E}}Q‘:,’ F\I@P

e

™
GPGPU Accelerate Computing Architecture

Latency Processor + Tbroughput processor

EEEEEEEE EEEEEEEN
EEEEEEEE EEEEEEEN
I EEEEEEEE DEEEEEEN

EEEEEEEND EEEEEEEN
EEEEEEEN EEEEEEm
SEEEEEEN O EEEEEEE
DEEEEEEE O EEDEEEE

DEEEEEEE O EEEEEEE
DEEEEEEN C EEEEEEE
EEEEEEEN C EEEEEEE
EEEEEEEN S EEEEEEE

More Detailed and Explained in the Thursday Session)

55

FP16 or FP32

NVIDIA Tensor Cores
Implementation Architecture

FP16 or FP32

56

™
VOLTA TENSOR OPERATION

Sum with
FP16 Full precision FP32 Convert to
storage/inp product accumulator FP32 result
ut
more products
F16 PR
m O — O —™
|
F32.
Also supports FP16 accumulator mode for

inferencing

Deep Learning Accomplished Promises

10

8
7
6

9.3x

(=)

cuBLAS Mixed Precision

(FP16 input, FP32 compute)
Matrix Multiply (M=N=K=2048)

faster

Relative
Performance

, 1N

P100 V100 - Tensor Cores
(CUDA 8) (CUDA9)

52

And... Quantum computing?

Advanced Computing Point of view
P g

" A quantum computer is a machine that performs calculations based on the laws of quantum
mechanics, which is the behavior of particles at the sub-atomic level.

QUANTUM

COMPUTER

e

Representation of Data - Qubits

A bit of data is represented by a single atom that is in one of two states denoted by | 0> and
| 1>. A single bit of this form is known as a qubit

A physical implementation of a qubit could use the two energy levels of an atom. An excited

state representing | 1> and a ground state representing | 0>.

Light pulse of

Excited frequency A for

State\‘

time interval t

— >

[State |0>] State | 1>

Ground
State

Representation of Data - Superposition

Light pulse of
frequency A for time
interval t/2

SO NG

[State | 0>] [State |0> + | 1>]

Consider a 3 bit qubit register. An equally Weighted superposition of all possible
states would be denoted by:

= 000> 001> +...+ |j+1>
V8 V8 8

Operations on Qubits - Reversible Logic

“Due to the nature of quantum physics, the destruction of information in a gate will cause

heat to be evolved which can destroy the superposition of qubits.

Ex.

Input Output

In these 3 cases,

The AND Gate

information is

being destroyed

A e
* C
B ¢

“This type of gate cannot be used. We must use Quantum Gates.

Quantum Computers Today

—

® Enterprises produce Quantum Computing
Laboratory Infrastructure (Non for

production)
* (Real) Quantum Computing (D-Wave, IBM)

® Quantum Computing Simulators (Atos)

AtOS
Quantum
Leaming
Machine

s

Quantum Computing Tomorrow

Local Machine | [Swich] | Switch]

¥
i y
Public Network HPC-QC node
A Ethemet
| QPU | ninBand
(o]
o
\ QC node I %
(b) l Interconnect ‘ Management Server Controller (FPGA)
l [[. 9
HW Device 1 § =
Node Node Node HW Device 2 5
A
| CPU | | CPU | | CPU | | HW Device n Analog
Carrier Signals
. aru ||| aru ||| aPu | v
o
Environment §
5
(c) | Interconnect |
I] I Out-of-band In-band

Node

| cpu |||l cPu |||| cPU

. aQpu ||| aru ||| aPu |
I I I

Quantum Interconnect

Node Node

| FIGURE 3. A component diagram representing the microarch-

itecture of a HPC-QC node with a common interconnect as

depicted in Figure 2(b). The diagram shows the major compo-
nents needed for the operation of a QPU within the HPC
node infrastructure. Individual components are grouped into

so-called out-of-band and in-band scopes and are placed on

FIGURE 2. Three macroarchitectures for integrating quantum thisVefechiand and Aefitband sids oF the Higurs, respectivel;

computing with conventional computing. (a) A local machine The QPU, which contains the qubits and is capable of proc-

remotely accesses a QPU through public cloud network. essing quantum information, is depicted at the lower part,

(b) A network of quantum-accelerated nodes communicate whereas classical information processing components are
through a common interconnect. (c) A network of quantum- stownintheiprer pac.of thefgme:Seveel hardwars ()
’ devices control the QPU environment, which has a direct

accelerated nodes communicate through both conventional effect on qubit properties and thus the quality of execution

and quantum networks. of instructions.

DEPARTMENT: EXPERT OPINION

Quantum ing systems are
variety of realworld i
are solved using i high-perfe

ping rapidly as powerful solvers for a

many of these same applications
ing (HPC) systems, which

-pei
have progressed sharply through decades of hardware and software improvements.

Here, we present a perspective on the

and chall of pairing

quantum computing systems with modern HPC

infrastructure. We outline

considerations and requirements for the use cases, macroarchitecture,

i , and p: ing models needed to integrate near-term
quantum computers with HPC system, and we conclude with the expectation that
such efforts are well within reach of current technology.

igh-performance computing (HPC) systems
define the pinnacle of modern computing by
drawing on massively parallel

power and workload in order to optimize overall sys-
tem performance.

This leading paradigm for HPC often relies on special-
ized accelerators and highly tuned networks to opti-
mize data and k

quantum (QCs) repre-
sent a young yet remarkable advance in the science and
technology of computation that are often cited as rivals

whereby many computational nodes are connected by
high-bandwidth networks to support shared informa-

or to state-of-the-art I high-per-
formance computing (HPC) systems. The source of this
proposed advantage of QCs derives from quantum

tion processing tasks. Existing nodes
also support highly concurrent execution with multi-
threaded processing, and technology trends indicate
that future node designs will integrate heterogeneous

inwhich is encoded

physical systems such as atoms,

electrons, and photons.” These quantum physical sys-

tems present the unique features of quantum coher-

ence and quantum entanglement that permit quantum
the

g that include cen-
tral processing units (CPUs), graphics ing units
(GPUs), field-programmable gate arrays (FPGAs), and
other ' The of

these future computational nodes must be tightly
integrated to balance data movement with processing

Please see the Acknowledgements section at the end of the
articke for a special statement regarding the copyright

02721732 © 2021 |EEE
Digital Object Idantifier 101108/MM 2021 3099140
Date of current varsion 14 Saptember 2021

September/Cctober 2021

to reduce

time and memory needed to solve many problems from
chemistry, materials science, finance, and cryptanalysis
among other application domains. The advantage
afforded to quantum computing is therefore aptly
named the “quantum computational advantage,” and
there is now a fervent effort to realize quantum comput-
ing systems that demonstrate this advantage. Notably,
recent efforts have focused on besting the world's lead-
ing HPC systems to great effect ***

Many of the most promising applications of quantum
computing overlap strongly with existing applications
of HPC.® which begs the question of how QCs may be
integrated with modem HPC to accelerate these

Published by the IEEE Computer Society IEEE Micro

sa0idx3 13lqO eMBS TOS

»
®
2
]
m
>
°
%)
=
e

0q|o0)

[-2EN - O < | Debug ~ AnycCPU ~ Bell

o . <c.o |8 Consortiums propose

Ff:)h;!;c;ln HelloQSharp (2 projects) Qu antum Fram eWO rks
—IBM, Microsoft, ATOS

—(Quantum Computing

Community. ..

Q# Interface * However without a good use fo
real Quantum mathematical
abstraction.

And the software ...

F—m——m—mm e e —————

HPC-QC Node

Classical Quantum Intermediate
Optimizer Representation (QIR)

Q-DSL Parser IR Tree Walker Coprocessor Backend

Service Interfaces

Quantum Software
Workflow

Programming Compilation Execution

feedback

Service Interfaces

Algorithmic Operator Pulse Scheduling

QIR Transformation and Control

Error Mitigation

Libraries Expression

FIGURE 4. Decomposition of the software architecture required for quantum-HPC integration into a series of workflow steps,
each exposing a unique set of service interfaces. This architecture maximizes the flexibility, modularity, and extensibility of the
suggested integration strategy. Here we show the workflow decomposed into programming, compilation, IR lowering, and execu-

tion components. Each component exposes a series of service interfaces intended for the implementation of concrete use cases.

Then..... The challenges (Are now for computing
people not for physicists)

® A «Real » Abstraction of Quantum Architecture
Quantum Memory (Optimized « in-Memory » System)

Software/ Application Elements
Definition of a Language with the « Assembly » possibilities
The Concept of a Operating System

® The « Production » Applications
Quantum Algorithms
Quantum Application Design and Code Structure
The Concept of Optimization (and compilation) in Quantum Computing

A post-moore architecture schema

The Challenges in Detail: Post
Moore Era Architectures

© Sustainable—Hybrid Technology

RISC/CISC
GPUs, Hybrid ARM/FPGAs, Accelerators, CPUS....
[/0O’ and Memory Management

® The “DataTreatment” Goal
Large Scale Data Sets (Supported by the Architecture
However scale capabilities changes
In-Situ and In-Transit Problem

* Very Known Schedulers, O.S. and Package Management
However, it is important to observe the architecture

o EX&SC&IG constrains

Computer Efficiency (Energy Consumption / Energy Aware)

™

The Software/Applications Approach

About High Performance Computing

HPC is useful to being faster, more precise overall, to solve large problems and to
treat, intrinsically, parallelism in essence.

However allows

—— Technological Advantage
Technological Independency
Competitively
Energy Savings

But, HPC is expensive

What & Why

What is high performance computing (HPC) from Parallel

Programming Approach?

The use of the most efficient algorithms on computers capable of the highest
performance to solve the most demanding problems.
Why HPC?
= Large problems — spatially/temporally
10,000 x 10,000 x 10,000 grid = 1072 grid points - 4x10*12 double variables -
32x10M2 bytes = 32 Tera-Bytes.
Usually need to simulate tens of millions of time steps.
On-demand/urgent computing; real-time computing;
Weather forecasting; protein folding; turbulence simulations/CFD; aerospace
structures; Full-body simulation/ Digital human ...
And Remember the slides 2 and 3...

HPC Examples

Earthquake simulation

Surface velocity 75 sec after earthquake

Flu pandemic simulation
300 million people tracked

Density of infected population, 45 days
after breakout

HPC Examples: Blood Flow in Human
Vascular Network

Cardiovascular disease accounts for about 50% of
deaths in western world;

Formation of arterial disease strongly correlated to
blood flow patterns;

In one minute, the heart pumps the entire blood Blood flow involves multiple scales
supply of & quarts through 60,000 miles of vessels, iRsihods

Dissipative particle dynamics (DPD)

that is a quarter of the distance between the moon @107

and the earth . |
Computational challenges: Enormous TS — L
problem Size ool [motecularadhesion

12)2
(m)

of
q9

10 18 TOF 10 1
Length

|

ity iso-

IC

Vort

-in
-1n

D

O

C

L)

-

0

S

et

7)) = m
= = S -
(@ N N
[}

C

()

(®))

O

£

O

.

HPC Example

How HPC fits into Scientific Computing

Air flow around -r— .
an airplane Physical Processes

Navier-stokes

equations Mathematical Models

1

Algorithms, BCs, solvers,) _
Application codes, Numerical Solutions 4 . HPC

supercomputers D

Data Visualization,
Validation,
Physical insight

Viz software

Advantages of Parallelization

Cheaper, in terms of Price/Performance Ratio

Faster than equivalently expensive uniprocessor machines
Handle bigger problems

More scalable: the performance of a particular program may be
improved by execution on a large machine

More reliable: In theory if processors fail we can simply use
others

|1

How to Parallelize?: Traditional Way

Actually applied for current well-known
applications with sequential implementations.

PROBLEM

Addressed (mainly) for distributed memory
applications

It's good as first approach of scientific computing
algorithm for (alone) scientists programmers.

L
| 14

Rofs=

d However this is not a traditional course...

Designing and Building Parallel Programs, by lan Foster in http://www.mcs.anl.gov/~itf/dbpp/

http://www.mcs.anl.gov/~itf/dbpp/

Design Spaces of Parallel Programming”

 Finding Concurrency (Structuring Problem to expose
exploitable concurrency)

S / e Algorithm Structure (Structure Algorithm to take
% advantage of Concurrency)
e /
e Supporting Structures (Interfaces between Algorithms
and Environments)

e Implementation Mechanisms (Define Programming
IM Environments)

/

ePatterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
Software Pattern Series, Addison-Wesley 2004

oy

Concurrent Programming General Steps

Analysis

Identify Possible Concurrency

« Hotspot: Any partition of the code that has a significant amount of activity
« Time spent, Independence of the code...

Design and Implementation
Threading the algorithm
Tests of Correctness
Detecting and Fixing Threading Errors
Tune of Performance

Removing Performance Bottlenecks
o Logical errors, contention, synchronization errors, imbalance, excessive overhead
o Tuning Performance Problems in the code (tuning cycles)

From: Patterns for Parallel Programming., by T. Mattson., B.
Sanders and B. MassinGill (Ed. Addison Weslley, 2009) Web
Site: http://www.cise.ufl.edu/research/ParallelPatterns/

http://www.cise.ufl.edu/research/ParallelPatterns/

Distributed Vs. Shared Memory Programming
(Remember Architecture Features)

Redundant Work Local Declarations and Thread-Local Storage

. Dividing Work Memory Effects:

False Sharing
Sharing Data (Different Methods)

Communication in Memory
Dynamic / Static Allocation of Work

Depending of the nature of serial algorithm, Mutual Exclusion
resulting concurrent version, number of threads /

processors Producer [Consumer Model

Reader /Writer Locks (In Distributed Memory is
Boss [Worker)

Decomposition

Task Parallelism Data Parallelism

m TaskD TaskG m Elem4 Elem7
TaskE TaskH m Elem5 Elem8
m Task F Task | Elem6 Elem?9

Tasks Decomposition : Task Parallelism
Data Decomposition: Data Parallelism /Geometric Parallelism

Task Parallelism : What are the tasks and how are
defined?

There should be at least as many tasks as there will be threads (or cores)
It is almost always better to have (many) more tasks than threads.

+ Granularity must be large enough to offset the overhead that will be
needed to manage the tasks and threads

|1

More computation: higher granularity (coarse-grained)
Less Computation: lower granularity (fine-grained)

Granularity is the amount of computation done before synchronization is
needed

/1

Task Granularity

N

Core 0

overhead
task

overhead

task

overhead

task

N\ |||||||| |||| |||||||| |||| |||||||| |||

~\

Core 1

overhead

S

task

overhead

task

overhead

task

~

Core 2

overhead

task

overhead

task

overhead

task

N |||||| ||| |||||| ||| |||||| |||

Fine-grained decomposition

Core O

overhead

<)

Core 1l

<)

Core 3

overhead

Coarse-grained decomposition

Granularity in Implementations

Dynamic grid

Fine grid

ENEEEEEEEE §F IIEEEEEEEEE
HEEEEEEENE F I EEEEEEEEn

Coarse grid

Target performance where

Lower Performance

Higher Performance

accuracy is required
(Using Processors and

Higher Accuracy

Lower Accuracy

(Using Processors)

(Using Nodes)

Nodes)

Task Decomposition
Considerations B

* What are the tasks and how are defined? @ @ —
* What are the dependencies between task }

and how can they be satisfied? ! '
* How are the task assignhed to threads?

THREAD1

Tasks must be assighed to threads for
execution

Task Dependencies

Order Dependency Data Dependency

oy Process 1

Process 2

Process 3

Enchantingly Parallel Code: Code without dependencies

Data Decomposition
Considerations

(Geometric Decomposition)

Data Structures must be (commonly) divided in arrays or logical
structures.

== Problem Data Set - How should you divide the data into
'—!\"‘_‘
1" chunks?

!

A .
|-||-| |.| |-| - How should you ensure that the tasks for
o || st || w2 || _wss | each chunk have access to all data
required for update?

- How are the data chunks assigned to
threads?

How are the data chunks (and tasks)
assigned to threads?

Data Chunks are associated with tasks and are assigned to threads statically or
dynamically

Via Scheduling

— Static: when the amount of computations within tasks is uniform and predictable

Dynamic: to achieve a good balance due to variability in the computation needed by
chunk

Require many (more) tasks than threads.

How should you divide data into chunks?

By individual elements

By groups of columns

By rows

By blocks

The Shape of the Chunk

Data Decomposition have an additional dimension.
It determines what the neighboring chunks are and how any
exchange of data will be handled during the course of the chunk

computations. s
I s I

B s I I I O
2 Shared Borders -----

5 Shared Borders

* Regular shapes : Common Regular data organizations.
* Irregular shapes: may be necessary due to the irregular
organizations of the data.

How should you ensure that the tasks for each chunk have
access to all data required for update?

Using Ghost Cells

o Using ghost cells to hold copied data from a neighboring chunk.

Original split with ghost cells

a./- -

Copying data mto ghost cells

Data Sharing Pattern

Data decomposition might define some data that must be shared among the tasks.

Data dependencies can also occur when one task needs access to some portions of
the another task’s local data.

= Read Only
Effectively Local (Accessed by one of the tasks)
Read Write

Accumulative

Multiple read / Single Write

Tasks and Domain Decomposition
Patterns

Task Decomposition Patterns
o Understand the computationally intensive parts of the problem.
o Finding Tasks (as much...)
o Actions that are carried out to solve the problem
o Actions are distinct and relatively independent.
Data Decomposition Patterns
« Data decomposition implied by tasks.

o Finding Domains:
o Most computationally intensive part of the problem is organized around the manipulation of large

data structure.
« Similar operators are being applied to different parts of the data structure.

o In shared memory programming environments, data decomposition will be implied by task
decomposition (To see in detail in the OpenMP session).

Concurrent Computation from Serial

Codes

Sequential Consistency
Property: Getting the
same answer as the serial
code on the same input
data set, comparing
sequence of execution in
concurrent solutions of
the concurrent
algorithmes.

Lo R Y

Sequential Version

.

Parallel / Concurrent Version

Not Parallelizable Jobs, Tasks and Algorithms

Algorithms with state

Rec u rre n Ce S Suges of Human Dev lopmt
Induction Variables pra 'ﬂ
Reductions -~ 3)9

’ ’
"
b

Loop-carried Dependencies

333

The Mythical Man-Month: Essays on Software Engineering. By Fred Brooks. Ed
Addison-Wesley Professional, 1995

Concurrent Design Models Features

+ Efficiency
Concurrent applications must run quickly and make good use of processing resources.
+ Simplicity
oy Easier to understand, develop, debug, verify and maintain.

+ Portability
In terms of threading portability.

+ Scalability
It should be effective on a wide range of number of threads and cores, and sizes of data
sets.

Design Evaluation Pattern

Production of analysis and decomposition:
Task decomposition to identify concurrency
— Data decomposition to indentify data local to each task

Group of task and order of groups to satisfy temporal constraints
Dependencies among tasks

Design Evaluation
Suitability for the target platform
Design Quality
Preparation for the next phase of the design

+ Organizing by Tasks
+ Task Parallelism
+ Divide and Conquer

+ Organizing by Data Decomposition
+ Geometric Decomposition
<+ Recursive Data

+ Organizing by Flow of Data
+ Pipeline

<+ Event-Based Coordination

Algorithm Structure Decision Tree
(Major Organizing Principle)

Start

l Organize By Tasks l Organize By Data Decomposition l Organize By Flow of Data
N
S
v 1
: !)
|
Linear - Recursive _ Linear Recursive
Linear -

- Recursive

: J — % :

i) A
Task Geometric . o E Based
X Divide and Conquer " Recursive Data Pipeline vent-Base
_| Parallelism | q | Decomposition N P Coordination

Divide and Conquer Strategy

Problem

Subproblem

Subproblem Subproblem Subproblem Subproblem

Divide and Conquer Parallel Strategy

merge |}

Each dashed-line box represents a task

Recursive Data Strategy

Involves an operation on a recursive data Examples:
structure that appears to require sequential Partial sums of a linked list.
processing:
Lists Uses:
o Trees Widely used on SIMD platforms (HPF77)
o Graphs Combinatorial optimization Problems.
Partial sums

Recursive Data structure is completely

PSR Lj ki
decomposed into individual elements. Ist ranking N
Euler tours and ear decomposition
Structure in the form of a loop (top-level Finding roots of trees in a forest of rooted
structure) directed trees.

Simultaneously updating all elements of
the data structure (Synchronization)

Pipeline Strategy

Involves performing a calculation on
many sets of data, where the calculation
can be viewed in terms of data flowing
through a sequence of stages

Instruction pipeline in modern CPUs

Vector Processing (Loop-level
pipelining)

Algorithm-level Pipelining
Signal Processing

Graphics

Shell Programs in Unix

time

pipeline stage 1. [C1] [G] [G5] [C] S5 |G
(AR CARIA R AR AR
e e (e (e (o] [
EARCAR AR EAR AR

pipeline stage 2:

pipeline stage 3:

pipeline stage 4:

linear pipeline

non-linear pipeline

Event-Based Coordination Strategy

Application decomposed into groups
of semi-independent tasks
interacting in an irregular fashion.

Interaction determined by a flow of
data between the groups, implying
ordering constraints between the
tasks

oy

Some Conclusions

High Performance Computing allows science and mathematics dreams and implementations... i.e. Artificial
Intelligence Implementation, data analytics, blockchain and more...

Computer systems involve different technologies and hybrid architectures, demanding sustainability, dynamicity
and they need support changes in the scale of data and processing.... And all processing in parallel.

Of course, observing requirements of the applications and large scale behavior (i.e. 10T platforms)

Power consumption, energy aware and computational efficiency reach sustainability. It is proposed from the design
of the architecture and it must be dynamic.

Exascale challenges : Co-Design

Big and little (embedded) HPC Architectures with the same challenges (memory contention, stable speed — up,
parallel coherence) follows same kind of solutions, but with different scale of treatment observing the data level.

Involving Software Engineering, Computer Architecture, Data Analytics and Performance Evaluation.

HPCis expensive (but It is more expensive to not have HPC Knowledge and Resources)

Parallel Computing is not a tendency. (From 2015 is mandatory in all universities and colleges in USA parallel
computing, scientific computing and advanced computing courses in science and engineering programs
(programming computing is mandatory also in high school from 2009).

Recommended Lectures

The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel Applications”, by
Clay Breshears (Ed. O Reilly, 2009)

Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s Blog:
http://www.informit.com/articles/article.aspx?p=1626979)

Patterns for Parallel Programming., by T. Mattson., B. Sanders and B. MassinGill (Ed.

Addison Weslley, 2009) Web Site: http://www.cise.ufl.edu/research/ParallelPatterns/
Designing and Building Parallel Programs, by lan Foster in
http://www.mcs.anl.gov/~itf/dbpp/

Lectures in the site: www.sc-camp.org

http://www.informit.com/articles/article.aspx?p=1626979
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.mcs.anl.gov/~itf/dbpp/
http://www.sc-camp.org/

Class work

* Revision of Chapter 2 of Designing and Building Parallel
Programs, by lan Foster in http://www.mcs.anl.gov/~itf/dbpp/

* Solve in the Exercises Section the 1 and 2 numerals.

* Imagine a solution for a real-world high complex problem to
solve in the campus (conceptually)

* Read
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_a
mdahl_multicore.pdf

g

http://www.mcs.anl.gov/~itf/dbpp/
http://www.linkedin.com/redirect?url=http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf&urlhash=kMoM&_t=tracking_disc

J "f

Questions?
Follow us: @SuperCCamp #SCCAMP2021
Or visit

http://www.sc-camp.org/

