
The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

OpenMP Tutorial
Robinson Rivas Suárez
Universidad Central de Venezuela

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

BsC in Computer Science (Maracaibo, Venezuela)

Master in Computer Science (Caracas, Venezuela)

Network Engineer (OIC, Japan)

Robinson

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Overview

• In this tutorial we will discuss OpenMP, the de facto standard for
Shared Memory architectures

• There is a lot of good material over the Internet. We suggest to follow
the OpenMP Consortium official releases

• For this presentation, we used Intel public material
• OpenMP can be run and tested from almost any desktop device, using

Windows, Linux or Mac based Operating Systems, as well as they have
gcc compiler

• Please read the material before making exercises!

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• That’s really necessary?
• Why to think about shared memory
• OpenMP and new models of programming
• Everyday platforms
• New trends

Overview

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Often, we professors teach our students that algorithms must be
designed, planned and then programmed as much abstract as
possible, i.e. only thinking on the problem to be solved rather than
the computer that actually solves it.

• This way of thinking is so-called abstract design

Back to school

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• In modern life, however, technical and physical details drives to
different ways to implement the same idea due to hardware
constraints

• In this dissertation, I will present two different such ways, based on
deep differences between architectural schemas

Real World

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

People who are more than casually interested in computers should
have at least some idea of what the underlying hardware is like.

Otherwise the programs they write will be pretty weird

― Donald Knuth,

The Art of Computer Programming,

 Volume 1: Fundamental Algorithms

An opinion

https://www.goodreads.com/work/quotes/108080
https://www.goodreads.com/work/quotes/108080

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• More than two processors using the same memory system, at least
parts of the same memory system

• It happens when there are many cores per processor. It was rare in
the very early years, but it is really common today

Shared Memory

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Think in a standard smartphone today. Tipically, ARM processors have 4
cores (even more)

• So, computers we have in our pockets needs to be programmed in an
efficient yet reliable way

• HPC in terms of shared

memory is not just for top

500 list supercomputers

… it matters everywhere!!

Shared Memory

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP is an standard set of instructions available for the most important HPC
programming languages

• It was originally proposed as an open specification in 1996
• First official draft of the

OpenMP consortium was

released in 1997

OpenMP

OpenMP is managed by the nonprofit technology consortium OpenMP Architecture Review Board (or OpenMP ARB), jointly defined by a
group of major computer hardware and software vendors, including AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat,
Texas Instruments, Oracle Corporation, and more. source: Wikipedia

https://en.wikipedia.org/wiki/Nonprofit_organization
https://en.wikipedia.org/wiki/Consortium
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Cray
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Fujitsu
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/NEC
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Oracle_Corporation

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Portability: code runs in any platform, since thread creation is
encapsulated inside the actual O.S.

• Programmer has not to control the thread behavior. It releases
him/her from the heaviest part of thread management

• Because is intended to work in shared memory, OpenMP does not
deal with message passing. It eliminates the most common source of
errors in parallel programming

Advantages of OpenMP

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Higly scalable: performance usually goes better when code is
executed in more cores

• By design, OpenMP permits to keep the sequential code as it is. It
allows to use the programs in different environments without need to
recompile (on the same architecture)

Advantages of OpenMP

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• This advantage is not universal.
• Some times, having a big number of threads available could lead to slower

programs

• Some times, having more threads than actual cores could lead to faster
programs

• Can you think in such scenarios?

Scalability

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Debugging process is not that easy. OpenMP doesn’t have an efficient
native error handling mechanism

• By now, internal details of threads are hidden for programmer. It is of
course an advantage for readyness and portability, but doesn’t allow
programmers to do fine control to improve performance on specific
architectures

OpenMP issues

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Many tools has being designed to help with this. But are not part of
the standard itself.

• Some examples are profilers like Valgrind, VAMPIR, SCORE-P, etc
• BSC (Barcelona-Spain)has developed a few useful tools to help better

understanding of OpenMP parallel code

OpenMP issues

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OMPT (OpenMP Tools Special Working Group) and OPARI2 (Jülich Research, U. of Oregon) were
designed to serve as tools to achieve runtime OpenMP indicators

• i.e., OpenMP community is dynamic and active

OpenMP issues

A Comparison between OPARI2 and the OpenMP Tools Interface in the
Context of Score-P
September 2014

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP doesn’t have memory-related instructions. You can’t deal
with cache, memory layers or new architecture models. Everything is
seem as plain shared memory (*)

• Startup time for threads is high compared to sequential time for
execution. So, if the problem is really small, OpenMP parallel version
could be worst than sequential version

(*) we’ll be back about this later

OpenMP issues

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

 OpenMP is designed as a series of compiler directives plus an small
suite of library functions. So:
• OpenMP is NOT a library nor a set of pre-compiled code
• OpenMP is NOT designed to run well in a distributed-memory

environment

what OpenMP doesn’t is …

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP is NOT a programming language, so you have not to learn
new instructions (not so much new instructions)

• OpenMP does not solve your problems with parallel code generation.
For instance, it doesn’t partition data in any way but array splitting, so
you must take care of data structures

what OpenMP doesn’t is …

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

“Premature optimization
is the root of all evil.”

― Donald Knuth,

The Art of Computer Programming,

 Volume 1: Fundamental Algorithms

WARNING

https://www.goodreads.com/work/quotes/108080
https://www.goodreads.com/work/quotes/108080

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

#include <stdio.h>

int main(char **argv,int argc)

{

#pragma omp parallel

 printf(“Salve, mundi\n”); //Hello world in latin ;-)

exit (0);

}

Example 1

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Compile:

#gcc -fopenmp hello.c –o hello

In general: gcc –fopenmp {source.c}

 options -o executable

• Run:

#export OMP_NUM_THREADS=4

#./hello

Compiling & running

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Compile & run this code with 2,4 and 8 threads

#include <stdio.h>

int main(char **argv,int argc)

{

#pragma omp parallel

 printf(“Salve, mundi\n”); //Hello world in latin ;-)

exit (0);

}

Example 1

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• You must configure the environment variable OMP_NUM_THREADS
depending on your O.S.

• This must be done before program execution. Once compiled, you
don’t need to recompile. Don’t worry, you can decide the number of
threads

Number of Threads

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Fork!

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Programs are executed sequentially, as a normal monoprocessor one
until a fork instruction is reached

• In this very moment, begins a “parallel” section. It means, really, that
system creates as many threads as are specified by the environment
or program

Fork-join model

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• ALL threads runs the same code
• Once threads ends their execution, they “join” into a single

thread again
• Internal variables inside threads are disposed. Specification

doesn’t says nothing about this memory

Fork-join model

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• More in detail:

● Threads are not necessarily related to the number of actual cores

• Threads can be nested

• Number of threads can be increased/decreased as you need

Fork-join model

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP is designed for shared memory architectures, but of course
there is important to share variables in many contexts

• Variables declared before parallel section, will be shared among
running threads

• Variables created inside parallel section (or appropiately defined) are
private in that context

Private and shared

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

int privateX=0;

#pragma omp parallel

{ int sharedX=0;

 privateX++;

 sharedX++;

 printf(“privateX %d sharedX %d\n”,

 privateX,sharedX);

}

Example 2

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

int privateX=0;

#pragma omp parallel

{ int sharedX=0;

 privateX++;

 sharedX++;

 printf(“Hello world priv %d share %d\n”,privateX,sharedX);

}

Variable privateX is actually shared between threads, while variable sharedX is private, it is, a copy is
stored inside each thread. Run this example with 4,8,16,32 cores. Can you see a pattern?

Note: confusion was intentional

Example 2

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP has the modifiers shared(vars) and private(vars)
• Modify the example to have a for instruction that modifies a shared

variable, like this

#pragma omp parallel shared(x)

for (i=0;i<100;i++)

 x++;

And then run with 2,4 and 8 threads

Example 2

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Thread’s execution order is non deterministic. OpenMP specification
doesn’t define any policy or special numbering for threads (except the
master one: Thread 0).

• Moreover, threads are intended to be really concurrent, so any thread
can start/finish at any time after parallel section is reached.

Execution order

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• All threads but the master (numbered as Thread 0) are destroyed
when all of them reaches the end of parallel section

• You can’t do any assupmtion about memory allocation, order of
creation nor order of destruction of threads.

Execution order

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

REMEMBER

You can’t do any assupmtion about memory
allocation, order of creation nor order of destruction

of threads.

Execution order

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

PLEASE REMEMBER !

You can’t do any assupmtion about memory
allocation, order of creation nor order of destruction

of threads.

Execution order

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP implements data parallelism. This is particularly useful for
problems where you want to run the same instructions over multiple
pieces of data.

• These pieces of data must be disjunct. But be careful: control over
data is your responsibility as programmer

• The most common use is when we deal with arrays or matrixes

for (i=start;i<end;i++)

x[i] = doSomething(a[i])

Data parallelism

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Many real-life problems can be modeled as a combination of
functional and data parallelism.

• Just splitting data to make threads deal with small portions seems not
to be always the smartest approach

Remark

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP designers gave an special treatment for “for” instruction (“DO”
instruction in Fortran)

• So, programmers doesn’t need to change anything on their semantics: OpenMP
handles everything (with certain restrictions)

Data parallelism

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

#include <stdio.h>

int main(char **argv,int argc)

{

#pragma omp parallel for

for (int i=0; i<N; i++)

 printf(“ i value: %d \n“,i);

}

Example 3

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• parallel for must be used just before the for instruction
• No other variables but incremental one must be used
• Incremental variable must not be modified inside the for instruction

Remarks on parallel for

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• If there are multiple for instructions, parallelism applies
to the innermost

• Each thread uses an internal copy of incremental variable

Remarks on parallel for

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

float product(float* a, float* b, int N)

{ float sum = 0.0;

#pragma omp parallel for shared(sum)

for (int i=0; i<N; i++)

 { sum += a[i] * b[i]; }

 return sum;

 }

Compile & run, discuss the results

Example 4

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• This code works perfect in sequential case (as it is very simple). But, if
you run it in many cores, you could get erroneous values most of
times

• Where is the bug?

Parallel execution

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Parallel execution

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• A deeper sight shows that

sum += a[i] * b[i];

Does not prevent that two threads collide writing the variable “sum”

In fact, if there are many threads, collisions are almost sure

To avoid this, only one thread must access the variable

Concurrency

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP has clauses that allows only one thread to execute specific
parts of code

• This part of code is called critical section and can be executed by only
one thread, even if other lines of code are being executed

Critical Section

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

float product(float* a, float* b, int N)

 { float sum = 0.0;

#pragma omp parallel for shared(sum)

 for (int i=0; i<N; i++)

 {

#pragma omp critical

 sum += a[i] * b[i];

 }

 return sum;

 }

Example 5

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Is there any problem within this solution?
#pragma omp critical

 sum += a[i] * b[i];

Critical Section

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• The best way to avoid this performance degradation, is to keep
private copies of the variable, and at the very end of computing, sum
all of them

• This is achieved in OpenMP with the clause

reduction(operator:variables)

Reductions

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• With this clause, we do say to compiler: “please keep a private copy of
X, initialize it, and apropriately combine all the private X’s at the end”

• Operators can be: sums, divisions, logical operators, etc

Reduction

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Inside parallel clause:
• Variables are initialized with neutral value depending on operation.
• Local copies are updated independently
• At end of clause, local copies are join together using operator

Reduction

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Reduction

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

float product(float* a, float* b, int N)

 { float sum = 0.0;

#pragma omp parallel for shared(sum) reduction(+:sum)

 for(int i=0; i<N; i++)

 { sum += a[i] * b[i];

 }

 return sum;

}

Example 6

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Since matrixes operations are, by far, the most common parallel
operation in Scientific Computing, parallel for clause is very
important in terms of performance

• You must be VERY CAREFUL about unexpected side-effects.

Comment on parallel for

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Not all the tasks derived from a parallel for will consume the same
time. For instance, think about probabilistic algorithms or filters
applied to images

• In such cases, some threads will work harder than others

Load Balance

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Suppose you have 12 tasks, whose times (in seconds) are these:

Time: {1, 3, 40, 30, 5, 6, 200, 100, 30, 1, 2, 150}

Total sequential time: 568 min

So, if you have two threads, these are the expected execution times:

Thread 0: {1, 3, 40, 30, 5, 6} = 85 min

Thread 1: {200, 100, 30, 1, 2, 150} = 483 min

Load Balance

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Remember: execution time is as fast as the slowest thread
into competition

Load Balance

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• However, if you have 3 threads, these are the times:

Thread 0: {1, 3, 40, 30} = 74 min

 Thread 1: {5, 6, 200, 100} = 311 min

 Thread 2: {30, 1, 2, 150} = 183 min
• And 4 threads:

 Thread 0: {1, 3, 40} = 44 min

 Thread 1: {30,5, 6 } = 41 min

 Thread 2: {200, 100 , 30} = 330 min

 Thread 3: {1, 2, 150} = 153 min

Load Balance

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• This is the time for different number of threads (worst time for each
scenario)

Load Balance

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• A way to avoid load unbalance, is scheduling jobs
• Threads can take dinamically as much work as they can deal with
• This leads to more efficient execution. Think in tasks as a card dealer

assigning jobs as threads ends its executions

Load Balance

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• This clause indicates OpenMP to divide the N indexes among T
threads in different ways.

• schedule(static)
• Divides indexes into equal chunks of size N/T. Default

• schedule(static, K)
• Assign chunks of size K using round robin method

Schedule clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• schedule(dynamic)
• Assigns ONE index to each Thread. As well as each Thread ends its execution,

a new index is delivered

• schedule(dynamic, K)
• The same as above, but with chunks of size K

Schedule clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• schedule(guided)
• Uses an exponential formula to decrease the size of chunk

• schedule(guided, K)
• The same as above, but chunks starts with size K

• schedule(runtime)
• Depends on the environment variable OMP_SCHEDULE

Schedule clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• STATIC: all tasks are similar on complexity and time execution
• DYNAMIC: tasks are quite different in complexity or execution time.

Usually, due to probabilistic behavior
• GUIDED: when workload is variable but not so much, and we want

planning time to be small.

When do we use SCHEDULE?

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

EACH TIME you have an scheduler, somebody has to work
coordinating threads

ALWAYS

Remark

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

#pragma omp parallel for schedule (static, 8)

 for(int i = start; i <= end; i += 2)

 { if (TestForPrime(i))

 gPrimesFound++;

 }

Every thread will be assigned with sets of 8 indexes to work with, until
all N sets are assigned.
 N=(end-start)/threads

Example 7

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

#pragma omp parallel for schedule (dynamic, 10)

for (int i = start; i <= end; i += 2)

 { if (TestForPrime(i))

 gPrimesFound++;

 }

Each thread, at beginning, works with 10 indexes. Then, once each
thread ends, is loaded with 10 more indexes until the total number is
reached. It is no important to assign all threads with the same final
number of indexes.

Example 7 part 2

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

#pragma omp parallel for if (n > 5000)

for (i= 0 ; i< n ; i++)

 { x = (i+0.5)/n; area += 4.0/(1.0 + x*x);

 } pi = area / n;

In this example, parallel section is called ONLY if variable n is greater
than 5000. It avoids unnecessary calculations for small sets

If clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• In many problems, we ask threads to perform different tasks. For
instance, use different filters for the same input image

• Lets imagine tasks as colours

Functional parallelism

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• There is the sections clause so each thread can perform its own code

#pragma omp parallel sections

{

 #pragma omp section

 redCode();

 #pragma omp section

 greenCode();

 #pragma omp section

 yellowCode();

}

Functional parallelism

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• A few control clauses allows programmers to decide more precisely
the behavior of threads

• For instance, you can block some threads because some conditions,
or make all wait for some conditions

Control clauses

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• This clause makes just one thread to execute some part of code. It is
not as private, so only one executes during whole running

#pragma omp parallel
{
 commonPart();
 …
 commonPart();
#pragma omp single
 {
 backup();
 } // all threads waits here
 moreCommonCode();
}

Single clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• All threads but MASTER skips this part of code

#pragma omp parallel
{
 commonCode();
 …
 commonCode();
#pragma omp master
 {
 masterCode();
 } if thread isn’t master, just skip this
 modeCommonCode();
}

Master clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

Single and master clauses seems to have the same behavior,
but there is an implicit barrier that makes the difference.

Remarks

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Every thread waits until barrier is reached

#pragma omp parallel shared (A, B, C)

{ task1(A,B);

 printf(“ALL finished task 1\n”);

#pragma omp barrier

 task2(B,C);
 printf(“Task 2 finished!!\n”);

}

Barrier clause

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• OpenMP has a set of library functions that helps to improve the
usage of compiler clauses

• These functions makes OpenMP more powerful and versatile,
bringing programmer even more control over their programs

OpenMP library

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• omp_set_num_threads: sets the number of threads for an specified
parallel section

• omp_get_num_threads: takes the number of actual threads running

OpenMP library

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• omp_get_max_threads: gets the number of threads that will be
created in the next parallel section

• omp_get_thread_num: gets the threadID of any thread (0.. N-1). Is
used to assign different instructions to each thread

OpenMP library

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Modern architectures allows the mixing of OpenMP and MPI in the
same programs!!

OpenMP – MPI

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

#include <mpi.h>
#include <omp.h>
#include <stdlib.h>
#include <stdio.h>
int i; int node,numnodes;
Int size=32;
int main(int argc,char **argv)
 { MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&node);
 MPI_Comm_size(MPI_COMM_WORLD,&numnodes);
 MPI_Bcast(&size, 1, MPI_INT, 0, MPI_COMM_WORLD);
#pragma omp parallel
 printf(" thread %d of %d inside node %d of %d\
 nodes\n",omp_get_thread_num(),omp_\
 get_num_threads(),node,numnodes);
MPI_Finalize();
}

Example 8

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• This code calculates π:

static long num_steps=100000;
double step, pi;
void main()
 { int i; double x, sum = 0.0;
 step = 1.0/(double) num_steps;
 for (i=0; i< num_steps; i++)
 { x = (i+0.5)*step; sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

Exercise 1

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Use OpenMP to parallelize this code, and discuss:
• Which variables must be private or shared?

• Must be critical sections?

• If not, can you solve using other methods?

Exercise 1

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

• Consider the following: search for an element within an unordered
array. Suppose we have this very simple code

int i,found;

found=0;

for (i=0;(i<N) && (!found);i++)

 if (a[i]==element) found=1;

Exercise 2

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

New Trends - UDS

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

New Trends - Tasking

The 12th Super Computing Camp – Virtual edition. Chile 2021Robinson Rivas – OpenMP Tutorial

New Trends - Locality

Thanks for taking this tutorial!!!

Robinson Rivas-Suarez
 robinson.rivas@ciens.ucv.ve

	Slide 1
	Robinson
	Overview
	Overview
	Back to school
	Real World
	An opinion
	Shared Memory
	Shared Memory
	OpenMP
	Advantages of OpenMP
	Advantages of OpenMP
	Scalability
	OpenMP issues
	OpenMP issues
	OpenMP issues
	OpenMP issues
	what OpenMP doesn’t is …
	what OpenMP doesn’t is …
	WARNING
	Example 1
	Compiling & running
	Example 1
	Number of Threads
	Fork!
	Fork-join model
	Fork-join model
	Fork-join model
	Private and shared
	Example 2
	Example 2
	Example 2
	Execution order
	Execution order
	Execution order
	Execution order
	Data parallelism
	Remark
	Data parallelism
	Example 3
	Remarks on parallel for
	Remarks on parallel for
	Example 4
	Parallel execution
	Parallel execution
	Concurrency
	Critical Section
	Example 5
	Critical Section
	Reductions
	Reduction
	Reduction
	Reduction
	Example 6
	Comment on parallel for
	Load Balance
	Load Balance
	Load Balance
	Load Balance
	Load Balance
	Load Balance
	Schedule clause
	Schedule clause
	Schedule clause
	When do we use SCHEDULE?
	Remark
	Example 7
	Example 7 part 2
	If clause
	Functional parallelism
	Functional parallelism
	Control clauses
	Single clause
	Master clause
	Remarks
	Barrier clause
	OpenMP library
	OpenMP library
	OpenMP library
	OpenMP – MPI
	Example 8
	Exercise 1
	Exercise 1
	Exercise 2
	New Trends - UDS
	New Trends - Tasking
	New Trends - Locality
	Slide 88

