
DevOps
SC-Camp 2021



Pedro Velho
PhD - UGA 2004-2010
...
Engineer - Ryax - since 2019



Introduction to DevOps



Culture

End-to-end 
responsibility ↕ 

"You build it, you run it"

Customer centric 🧑💼

Understand business 
needs, Focus on features

Cross-functional 
Team 👥

Developer, Operators, 
Security, and QA in the 

same team

Transparency 🧊

Share Knowledge, 
Collaborate, Data driven 

decisions



Organization Transfomation
Functional team:
• Focus on technologies

• Long V cycle of release

• Lots of communication friction

• No understanding of user needs

• No knowledge sharing or ownership

🧑💼 Developer Team

 👷 Security/QA Team

 👨💻 Operation Team

Product Team:
• Focus on product

• Fast Agile cycle of release  

• More efficient communication

• Real understanding of user needs

• Share knowledge and ownership

Product A Team
   🧑💼 👷👨💻

Product B Team
   🧑💼 👷👨💻



Principles
And

Good Practices

Automate ⚙ 

Automate every steps with 
CI/CD

  👈 Shift left

Find bug and security 
issues early with 
automated tools

 ⏱️ Release often,
release early

Quick feature release and 
bug fixes

⚡ Fast Feedback

Observability: logs, metrics, 
and traces

Agile 
Methodologies 💬

Have rituals to synchronize 
a collaborate efficiently

 📝 Infrastructure 
as Code 

Build reproducible and 
immutable containers and 

infrastructure



DevOps Best Practices
 💬 Agile methodologies
1. Define your rituals (Daily, review, postmortem, 

retrospective, ...)
2. Randomly choose a Scrum Master
3. Design feature with the whole team, PO brings only 

business needs
4. Iterate and improve
 👈 Shift left
5. Create unit tests and integration
6. Select code quality tools
7. Put tests and quality checks in the CI pipeline
8. Only integrate code if all the quality is good
 ⚙️ Automate:
9. Track all manual/implicit processes
10.Choose a documentation tool
11.Document them
12.Automate them if possible

 📝 Infrastructure as Code

1. Choose appropriate tool

2. Code your infrastructure

3. Deploy it within the CI

4. Forbid any manual changes

 ⚡ Fast Feedback

5. Get metrics, logs and traces from your apps

6. Setup alerting on user focus signals

7. Setup dashboards to observe and explore 

 ⏱️ Release often, early

8. Implement other practices

9. Automate deployment with CD

10.Monitor and rollback if necessary

11. Track the time-to-deliver and try to improve it!



Source: https://www.hiclipart.com/free-transparent-background-png-clipart-
pytym



DevOps Life Cycle Tools
Plan
• Use knowledge sharing tools 

Example: wiki, issue tracker, whiteboard and post-it

Code
• Use an IDE with integrated quality check 

tools
Example: VSCode, PyCharm

• Enforce code integration process with code 
review
Example: Gitlab, Github

Build
• Enforce reproducible build

Example: Poetry (Python), Yarn (NodeJs)

• Package in a container
Example: Docker, Kaniko, Nix, Buildah

Test
• Create a pyramid of test with coverage

Example: Pytest (Python)

Release

• Push build artifact to a registry with a 
unique version tag
Example: Skopeo, DockerHub, Harbor

Deploy

• Deploy your container(s) on a cluster
Example: Kubernetes, Nomad

Operate

• Manage infrastructure updates
Example: Helm, Kubeadm

Monitor

• Monitor important user-facing signals 
(latency, traffic, errors, saturation)
Example: Prometheus, Grafana

• Setup an alerting system
Example: Prometheus, Slack



DevOps: Culture, Practices, Tooling

Culture

Principles
And

Good 
Practices



Versioning

 Introduction to versioning with git
 commit
 pull/push
 merge
 why not use rebase?



Versioning
 Code Versioning Systems propose:

Keep track of changes, who did what and when?
 Examples:

Fast rewind to find code before a change/feature

Fast forward to a new experimental feature

Find first change that introduced a bug

Who introduced the bug and when? Blame!

Jhon Romeros talk : Doom's a year of madness : "How did you handle version control back then? There was none,... We just 
watched not to touch other presons' files", see full talk here https://www.youtube.com/watch?v=eBU34NZhW7I

https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I


Versioning

 Git, a bit of history
Other CVS exist: cvs, mercury, svn
Not adapt well to the linux kernel development culture

Mainly remote devs and volunters geographically spread

Git was one of the first to introduce CVS in a distributed manner

Heavily influenced by the non-free solution bitkeeper

Git book is free to read online https://git-scm.com/book/en/v2

https://git-scm.com/book/en/v2


Versioning

 Introduction to git
Every code change is explicit commit by the dev

The commits make a history tree (formaly a graph)

Every node on the tree is a commit (code change)

Parallel changes are allowed (branch)

Parallel changes can be merged



Versioning



Versioning

commit



Versioning

commit

branch



Versioning

commit

branch

merge



Versioning
 The remote history (commit tree) is shared amongs devs
 Every dev copy the full history to start working
 Devs then make changes on the local history 

Branch
Commit
Merge

 Once changes are ready devs can push changes to the remote
 Devs can pull remote changes as well
 Beware of conflicts



Versioning
 Working example 1 dev (Bob)

Clone from inital commit

git clone

Add a README.md file

git add README.md

git commit -m "Add README.md FILE"

Update README.md file

git add README.md

git commit -m "Update README.md file" clone



Versioning
 Working example 1 dev (Bob)

Clone from inital commit

git clone

Add a README.md file

git add README.md

git commit -m "Add README.md FILE"

Update README.md file

git add README.md

git commit -m "Update README.md file" clone

git add
git commit



Versioning
 Working example 1 dev (Bob)

Clone from inital commit

git clone

Add a README.md file

git add README.md

git commit -m "Add README.md FILE"

Update README.md file

git add README.md

git commit -m "Update README.md file" clone

git add
git commit



Versioning

 Working example 1 dev
Remote history only add B1 and B2 after bob calls
git push



Versioning

 Working example 1 dev
Remote history only add B1 and B2 after bob calls
git push



Versioning

 Working example 2 devs (ana & bob)
Ana start fresh clone from R1
Bob start fresh clone from R1
Bob finishes and push his work to remote upstream
Ana finishes and push her work to the upstream

What happens?



Versioning

 Working example 2 devs (ana & bob)



Versioning

 Working example 2 devs (ana & bob)

Bob 
clones 
project

Ana 
clones 
project



Versioning

 Working example 2 devs (ana & bob)

Bob 
clones 
project

Ana 
clones 
project

git add
git commit



Versioning

 Working example 2 devs (ana & bob)

Bob 
clones 
project

Ana 
clones 
project

git add
git commit

git add
git commit



Versioning

 Working example 2 devs (ana & bob)

Bob 
clones 
project

Ana 
clones 
project

git add
git commit

git add
git commit

Bob 
pushes his 
changes 
first



Versioning

 Working example 2 devs (ana & bob)

Push is rejected 
! Ana need to 
sync with 
remote history 
first

Bob 
clones 
project

Ana 
clones 
project

git add
git commit

git add
git commit

Bob 
pushes his 
changes 
first



Versioning

 Working example 2 devs (ana & bob)
Ana execute command to pull remote changes
git pull
When pulling the differences git tries to autoforward
git push
Ana's commit goes after Bob's



Versioning
 Conflicts can happen and will happen
 Always branch before start working

git checkout -b "my-branch-name"
 2 devs work on the same file and same branch

Last dev to push, is the one that must solve the conflict
 Avoid commands that rewrite the history

Never use -> git rebase
 Avoid commiting on the master branch

Create a new branch for each dev



Versioning
 Gitlab merge-request
 Every change on the main branch affect all users and the new release
 In gitlab a merge-request allows to keep track of changes on the main branch 

(simplification)
 Advantages on the CI process:

Keep a clear track of what changes are upcomming

Show the code changes for a specific request

Allows a review process to take place

Ideally not the same dev will look at the code and validate

Ideally not the same dev will merge the changes



Versioning

 Gitlab merge-request



Versioning

 Gitlab merge-request



Versioning

 Gitlab merge-request

Choose a 
source 
branch

Choose a 
target 
branch

Compare 
branches 
before 
creating the 
MR



Versioning

 Gitlab merge-request



Versioning

 Gitlab merge-request

Choose a 
source 
branch



Versioning

 Gitlab merge-request

Choose a 
source 
branch

Choose a 
target 
branch



Versioning

 Gitlab merge-request

Choose a 
source 
branch

Choose a 
target 
branch

Compare 
branches 
before 
creating the 
MR



Versioning

 Gitlab merge-request

Set a title and description

Assignees

Person that repondes to this MR

Reviewers

Person to approuve this MR 



Versioning

 Gitlab merge-request

Scrolling down we can see

Changes

Commits



Versioning

 Settings -> General
 Merge request approvals

# reviewers that must approve



Versioning

 How this scenario would work with gitlab review?

Bob 
clones 
project

Ana 
clones 
project

git add
git commit

git add
git commit

Bob 
pushes his 
changes 
first



Versioning

 How this scenario would work with gitlab review?

Ana can push 
freely because 
she is working 
on a separate 
branch

Bob 
clones 
project

Ana 
clones 
project

git add
git commit

git add
git commit

Bob 
create 
a MR 
Ana 
review
s 
appro
uve 
and 
merge 
it on 
main 
branch

update_read
me

add_licens
e

main



Versioning

 Work on a multi-tenant gitlab project
 Precommit - add basic coding checks style
 merge request
 review process
 approval system


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Organization Transfomation
	Slide 6
	DevOps Best Practices
	Slide 8
	DevOps Life Cycle Tools
	DevOps: Culture, Practices, Tooling
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

