DevOps
SC-Camp 2021

Pedro Velho

PhD - UGA 2004-2010

Engineer - Ryax - since 2019

Introduction to DevOps

Transparency

Share Knowledge,
Collaborate, Data driven
decisions

End-to-end
responsibility T

"You build it, you run it"

Culture

Customer centric

Understand business
needs, Focus on features

Organization Transfomation

Functional team:

Focus on technologies

Long V cycle of release

Lots of communication friction
No understanding of user needs

No knowledge sharing or ownership

Developer Team

Security/QA Team

Operation Team

Product Team:

Focus on product

Fast Agile cycle of release

More efficient communication
Real understanding of user needs

Share knowledge and ownership

Product A Team

Product B Team

°J |

Agile
Methodologies

Have rituals to synchronize
a collaborate efficiently

Shift left Principles

And

Find bug and security _
Good Practices

issues early with
automated tools

Release often,
release early

Quick feature release and
bug fixes

Automate %

Automate every steps with

CI/CD

Infrastructure
as Code

Build reproducible and

immutable containers and
infrastructure

s Fast Feedback

Observability: logs, metrics,
and traces

DevOps Best Practices

Agile methodologies Infrastructure as Code

1. Define your rituals (Daily, review, postmortem, 1. Choose appropriate tool

retrospective, ...)

2. Randomly choose a Scrum Master 2. Code your infrastructure

3. Design feature with the whole team, PO brings only 3. Deploy it within the Cl

business needs 4. Forbid any manual changes
4. Iterate and improve Fact Feedback

Shift left :
5. Create unit tests and integration 5. Get metrics, logs and traces from your apps

6. Select code quality tools 6. Setup alerting on user focus signals

7. Put tests and quality checks in the Cl pipeline /. Setup dashboards to observe and explore
8. Only integrate code if all the quality is good Release often, early
Automate:

8. Implement other practices

9. Track all l/implicit
rackall manual/implicit processes 9. Automate deployment with CD

10 Choose a documentation tool

11 Document them 10.Monitor and rollback if necessary

12.Automate them if possible 11. Track the time-to-deliver and try to improve it!

Ops

Source: https://www.hiclipart.com/free-transparent-background-png-clipart-
pytym

Plan

Code

Build

Test

DevOps Life Cycle Tools

Use knowledge sharing tools

Example: wiki, issue tracker, whiteboard and post-it

Use an IDE with integrated quality check
tools

Example: VSCode, PyCharm

Enforce code integration process with code
review

Example: Gitlab, Github

Enforce reproducible build
Example: Poetry (Python), Yarn (NodeJs)

Package in a container
Example: Docker, Kaniko, Nix, Buildah

Create a pyramid of test with coverage
Example: Pytest (Python)

Release

* Push build artifact to a registry with a
unigue version tag

Example: Skopeo, DockerHub, Harbor
Deploy
* Deploy your container(s) on a cluster
Example: Kubernetes, Nomad

Operate

* Manage infrastructure updates
Example: Helm, Kubeadm

Monitor

* Monitor important user-facing signals
(latency, traffic, errors, saturation)

Example: Prometheus, Grafana
e Setupan alerting system

Example: Prometheus, Slack

DevOps: Culture, Practices, Tooling

Principles
And

Good
Practices

Versioning

Introduction to versioning with git
commit

pull/push

merge

why not use rebase?

Versioning

* Code Versioning Systems propose:
Keep track of changes, who did what and when?
* Examples:
Fast rewind to find code before a change/feature
Fast forward to a new experimental feature
Find first change that introduced a bug
Who introduced the bug and when? Blame!

Jhon Romeros talk : Doom's a year of madness : "How did you handle version control back then? There was none,... We just
watched not to touch other presons'files", see full talk here https.//www.yvoutube.com/watch?v=eBU34NZhVW/]

https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I
https://www.youtube.com/watch?v=eBU34NZhW7I

Versioning

* Git, a bit of history
Other CVS exist: cvs, mercury, svn
Not adapt well to the linux kernel development culture
Mainly remote devs and volunters geographically spread
Git was one of the first to introduce CVS in a distributed manner
Heavily influenced by the non-free solution bitkeeper

Git book is free to read online https://git-scm.com/book/en/v2

https://git-scm.com/book/en/v2

Versioning

* Introduction to git
Every code change is explicit commit by the dev
The commits make a history tree (formaly a graph)
Every node on the tree is a commit (code change)
Parallel changes are allowed (branch)

Parallel changes can be merged

=G ..

Versioning

@ Bump ©.0.25
Remnue setuptools from ci, it is already there.
& Bump 0.0.24

Eﬂerge branch 'add project' into 'master’

|add project to CLI

[P Fix yaml
_ﬁ-Fix release shell

|| Add a release step in the CI to create tarball

Versioning

@ Bump ©.0.25
Remwe setuptools from ci, it is already there.
& Bump 0.0.24

Eﬂerge branch 'add project' into 'master’

“ Yadd project to CLI

B Fix yaml
_ﬁ-Fix release shell

|| Add a release step in the CI to create tarball

}.FWE.E

commit

Versioning

@- @Bump 9.8.25

#3 Remove setuptools from ci, it is already there.

] Bump ©.0.24

Eﬂerge branch 'add project' into 'master’
l/.. . |add project to CLI
r Lv EFix yaml
¢ |P Fix release shell
branch rT || Add a release step in the CI to create tarball

commit

Versioning

@1 @Bump 0.0.25

merge & [Remove setuptools from ci, it is already there.

] Bump ©.0.24

q:-
l/.' Eﬂerge branch 'add project' into 'master’

. |add project to CLI

r L‘ iFix yaml

ﬁ_Fix release shell

branch rT || Add a release step in the CI to create tarball

commit

Versioning

The remote history (commit tree) is shared amongs devs
Every dev copy the full history to start working

Devs then make changes on the local history

Branch

Commit

Merge

Once changes are ready devs can push changes to the remote
Devs can pull remote changes as well

Beware of conflicts

Versioning

* Working example 1 dev (Bob)
Clone from inital commit
git clone
Add a README.md file

git add README.md Remote history Bob's history

git commit -m "Add README.md FILE" B2 | Update README.md file
Update README.md file

gitadd README.md Bl Add README.md file

git commit -m "Update README.md file" clone

R1 Initial commit ‘ R1 Initial commit

Versioning

* Working example 1 dev (Bob)
Clone from inital commit
git clone
Add a README.md file

git add README.md Remote history Bob's history

git commit -m "Add README.md FILE" B2 | Update README.md file
. git add
Update README.md file git commit
git add README.md Smm) | B Add README md file
git commit -m "Update README.md file" clone

RT Initial commit @) | Rl Initial commit

Versioning

* Working example 1 dev (Bob)
Clone from inital commit
git clone
Add a README.md file

git add README.md Remote history Bob's history

o

git commit -m "Add README.md FILE" B2 | Update README.md file
. it add
Update README.md file g:t 2ommit
gitadd README.md Ss=) | Bl AddREADMEmd file
git commit -m "Update README.md file" clone

Rl Initial commit @) (R Initial commit

Versioning

* Working example 1 dev
Remote history only add BT and B2 after bob calls

git push |
Remote history Bob's history

B2 Update README.md file

Bl Add README.md file

R1 Initial commit R1 Initial commit

Versioning

* Working example 1 dev
Remote history only add BT and B2 after bob calls

git push |
Remote history ~ Bob's history
B3 Update README.mdfile B3 Update README.md file
B2 Add README.md file B2 Add README.md file

R1 Initial commit R1 Initial commit

Versioning

* Working example 2 devs (ana & bob)
Ana start fresh clone from R

Bob start fresh clone from R

Bob finishes and push his work to remote upstream

Ana finishes and push her work to the upstream
What happens?

Versioning

Working example 2 devs (ana & bob)

Remote history Bob's history Ana's history
B3 | Update README.md file B3 = Update README.md file
B2 Add README.md file B2 Add README.md file Al Add license.txt file

R1 Initial commit R1 Initial commit R1 Initial commit

Versioning

Working example 2 devs (ana & bob)

Remote history Bob's history Ana's history
B3 | Update README md file B3 = Update README.md file
B2 Add README.md file B2 Add README.md file Al Add license.txt file
R1 Initial commit PR R1 Initial commit o R Initial commit
Bob Ana

clones clones

"rnin~+¥+ ALl A A~ +

Versioning

Working example 2 devs (ana & bob)

Remote history Bob's history Ana's history
B3 | Update README.md file B3 = Update README.md file
git add
git commit
B2 Add README.md file B2 Add README.md file == A1 Add license.txt file
R1 Initial commit p— R1 Initial commit o | RI Initial commit
Bob Ana

clones clones

"rnin~+¥+ ALl A A~ +

Versioning

Working example 2 devs (ana & bob)

Remote history Bob's history Ana's history
B3 Update README.md filﬁ_’ B3 Update README.md file
git add gitadd
git commit git commit

B2 Add README.md file Ss=) | B2 Add README.md filo =) = A1 Add license.txt file

RT ~ Initial commit) | Rl Initial commit o) | R1 - Initial commit

Bob Ana
clones clones

"rnin~+¥+ ALl A A~ +

Versioning

* Working example 2 devs (ana & bob)

Remote history

g~ B3
Bob
pushes his
changes
first B2

R1

Update README . md file B3
git add
git commit
Add README.md file N [B2

Initial commit) R1

Bob
clones

Nnrala~F

Bob's history

Update README md file

git add
git commit

Add README.md file e | AT

Initial commit o | R

Ana

clones
“mres o~ e~

Ana's history

Add license.txt file

Initial commit

Versioning

* Working example 2 devs (ana & bob)

Remote history

o==) B3
Bob
pushes his
changes
first B2

R1

Update README . md file B3
git add
git commit
Add README.md file N [B2

Initial commit) R1

Bob
clones

Nnrala~F

Bob's history

Update README md file

git add
git commit

Add README.md file s | AT

Initial commit P

Ana

clones
“mres o~ e~

Ana's history

Add license.txt file ﬂ

Initial commit

Push is rejected
I Ana need to
sync with
remote history
firct

Versioning

* Working example 2 devs (ana & bob)

Ana execute command to pull remote changes

git pull
When pulling the differer
git push

Ana's commit goes after |

Remote history

Bob's history

Al Add license txt file B2 Update README.md file Al
B3 Update README.md file B2 Add README.md file B3
B2 Add README md file R Initial commit B2
R1 Initial commit R1

Ana's history

Add license.txt file

Update README.md file

Add README . md file

Initial commit

Versioning

Conflicts can happen and will happen

Always branch before start working

git checkout -b "my-branch-name"

2 devs work on the same file and same branch

Last dev to push, is the one that must solve the conflict
Avoid commands that rewrite the history

Never use -> git rebase

Avoid commiting on the master branch

Create a new branch for each dev

Versioning

Gitlab merge-request
Fvery change on the main branch affect all users and the new release

In gitlab a merge-request allows to keep track of changes on the main branch
(simplification)

Advantages on the Cl process:
Keep a clear track of what changes are upcomming
Show the code changes for a specific request
Allows a review process to take place
|deally not the same dev will look at the code and validate

|deally not the same dev will merge the changes

& GitLab

S Q@ ® e

[CRE<I

O x BEDSHE

ryax-tech >

Versioning

Gitlab merge-request

= Menu a pD® ['w. @“' ‘.i) =

public > keystore_rest_server > Merge requests

Merge requests are a place to propose
changes you've made to a project and
discuss those changes with others

Interested parties can even contribute by pushing commits if they

want to.
New merge request

& GitLab

S Q@ ® e

[CRE<I

O x BEDSHE

ryax-tech >

Versioning

Gitlab merge-request

= Menu a pD® ['w. @“' ‘.i) =

public > keystore_rest_server > Merge requests

Merge requests are a place to propose
changes you've made to a project and
discuss those changes with others

Interested parties can even contribute by pushing commits if they
want to.

- New merge request

Versioning

Gitlab merge-request

&) Gitlab = menu v SearchGitlab a p® I'sv e G @~

ryax-tech » public > keystore_rest server » Merge requests » New

Choose a

. Choose a
source o
1

target

New merge request

b ra n C h Source branch Target branch b h
ryax-tech/public/keystore_.. 01-packaging and doc.. ryax-tech/public/keystore_... main ~
-
@ @ Add configuration in the Readme + fix 320459 | 13 @ move tests and add store test paf1367¢ | [
test comments Michael Mercier authored 16 hours ago
o] Michael Mercier authored 17 hours ago
2
@
=}
i
= Compare
X branches
o]

before
creating the
MR

Gitlab merge-request

8 aNZFQ@e

o

Versioning

ge requests » New

New merge request

Source branch

ryax-tech/public/keystore_.. 01-packaging and doc..
m Add configuration in the Readme + fix 2320459
test comments

Michael Mercier authored 17 ho

7

Target branch

ryax-tech/public/keystore_...

main

m move tests and add store test

Michael Mercier a

08f1367e

[F)

OJ!SO

Versioning

Gitlab merge-request

Choose a
source
branch

& GitLab

v ¥ public » keystore_rest_server > M

ge requests » New

o
New merge request
B
o Source branch Target branch
ryax-tech/public/keystore_.. 01-packaging and doc.. ryax-tech/public/keystore_... main
-
@ @ Add configuration in the Readme + fix 320459 | 13 m move tests and add store test paf1367¢ | [
test comments Michael Mercier authored 16 hou
o] Michael Mercier authored 17 hours ago
2
and continue
@
=}
i
u}
%

o

OJ!SO

Versioning

Gitlab merge-request

&p GitLab = Menu c rm. wo ™ @

ryax-tech » public > keystore_rest server » Merge requests » New

Choose a Choose a

2 New merge request
source S target
b ra n C h o Source branch Target branch b h

ryax-tech/public/keystore ... 01-packaging and doc.. ryax-tech/public/keystore_... main ~
-
@ @ Add configuration in the Readme + fix 320459 | 13 @ move tests and add store test paf1367¢ | [
test comments Michael Mercier authored 16 hours ago

o] Michael Mercier authored 17 hours ago

2

o Compare branches and continue

.

=}

i

u}

%

o

Versioning

Gitlab merge-request

&) Gitlab = menu v SearchGitlab a pe I'sv e G @G-

ryax-tech » public > keystore_rest server » Merge requests » New

Choose a

. Choose a
source o
1

target

New merge request

Source branch Target branch

ryax-tech/public/keystore ... 01-packaging and doc.. ryax-tech/public/keystore_... main J
-
@ ﬁ Add configuration in the Readme + fix 320459 | 13 & move tests and add store test paf1367e | [3
test comments Michael Mercier authored 16 hours ago
o] Michael Mercier authored 17 hours ago
2
@
=}
i
i Compare
X branches
o]

before
creating the
MR

o !gb
Versioning J

GitLab

jests > New

h > public > keystore_rest_server > Merge req

K keystore_rest_server ryax-tec

Gitlab merge-request

@ Project information
New merge request

B Repository
. . . From @1-packaging_and_docker-solution into main Change branches
Set a title and description 7 i
p 1Y Merge requests 0
g ClicD Title Add configuration in the Readme + fix test comments

© Security & Compliance Start the title with Draft: to preventamerge request thatis a work it

/ \S S | g n e e S Add description templates to help your contributors communicate effe
@ Deployments

B2 Monitor _—
Description Write

Preview

Person that repondestotsii .

lhr Analytics

Reviewers o

£} Settings Markdown and quick actions are supported

Person to approuve this N

Assignees Unassigned Assign to me
Reviewers Unassigned
1member must approve to merge. Anyone with role Developer or high

» Approval rules

Milestone Milestone

Labels Labels

Versioning

Gitlab merge-request
Scrolling down we can see
Changes

Commits

& GitLab

K keystore_resk_server

@ Project information
B Repository
Issues
I Merge requests
« cjco
@ Security & Compliance
@ Deployments
Monitor

=
> Infrastructure

[n]

Packages & Registries

Analytics
M wiki
6 Snippets

L} Settings

OJ!SO

[] Squash commits when merge request is accepted. (B

Create merge request Cancel

Commits 1 Changes 2
Showing 2 changed files v with 13 additions and 2 deletions

v BYREADME.md [}

This is a simple Pyhton web server example application. It provides a Keystore REST
API based on a Redis storage.

Configuration
The API is serving by default on the port 5600.

Configuration variables are:

- REDIS HOST: the redis server host (default: redis)

- REDIS PORT: the redis server port (default: 6379)

- REDIS_PASSWORD: the redis server password (default: password)

- DEBUG: Run the Flask web server in Debug mode is set to "true" (which is the
default)

v B test/_test_end2end.py [

def test_create_read():

r = requests.post(
"http://localhost:5000/keystore”, data='{"key": "1", "value":"something"}

Versioning

Settings -> General

Merge request approvals

reviewers that must approve

e

C @ O B hitpsi/gitlab.com/ryax-te. B 90% ¢ X markdowr > @ LIy

4 GitLab = Menu

D HEH MmN ZFOE e

()

Merge requests

Choose your merge method, merge options, merge checks, merge suggestions, and set up a default description template for mel

requests.

Merge request approvals

Define approval rules and settings to ensure separation of duties for new merge requests. Learn more.

Approval rules

Approvers Target branch

Eligible users @ All branches

Vulnerability-Check @
Requires approval for vulnerabilities. Learn more.

License-Check @
Requires approval for Denied licenses. More information

Coverage-Check @
Requires approval for decreases in test coverage. Learn more.

Add approval rule

Approval settings

Define how approval rules are applied to merge requests. Learn more.

Prevent approval by author.

Approvals require

Versioning

* How this scenario would work with gitlab review?

Remote history

o~ B3
Bob
pushes his
changes
first B2

R1

Update README . md file B3
git add
git commit
Add README.md file) B2

Initial commit o) R1

Bob
clones

Nnrala~F

Bob's history

Update README md file

git add
git commit

Add README.md file e | A1

Initial commit o | R

Ana

clones
“mres o~ e~

Ana's history

Add license.txt file

Initial commit

Bob
create
a MR
Ana
review
S
appro
uve
and
merge
it on
main
branch

- B3

B2

R1

Remote history

main

Versioning

Update README . md file

git add
git commit

Add README.md file Ny

Initial commit

o~

Bob
clones

Nnrala~F

Bob's histor

B3

B2

RT

* How this scenario would work with gitlab review?

Ana's history

I’Y\If\

Update README md file

git add
git commit ﬁﬂﬁm
Add README.md file = [A1 Add license txt file ﬁ

Initial commit o | R1 . Initial commit Ana can push
freely because

Ana she is working

clones on a separate

nnnnnn . branch

Versioning

* Work on a multi-tenant gitlab project

* Precommit - add basic coding checks style
* merge request
* review process

* approval system

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Organization Transfomation
	Slide 6
	DevOps Best Practices
	Slide 8
	DevOps Life Cycle Tools
	DevOps: Culture, Practices, Tooling
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

