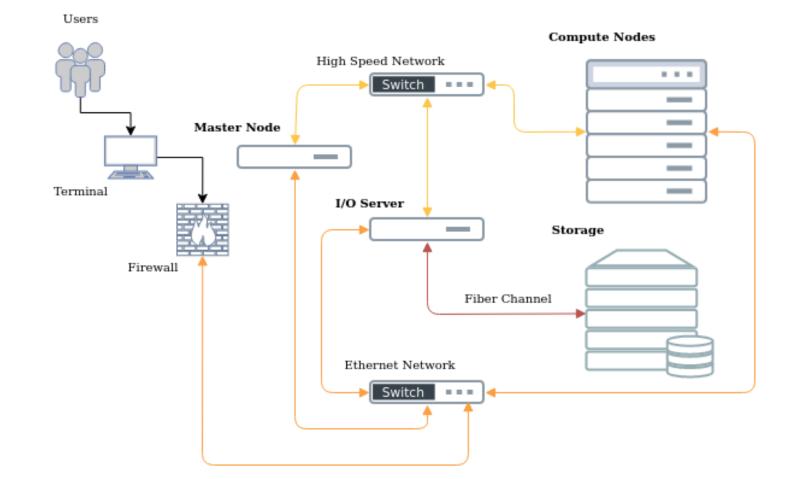
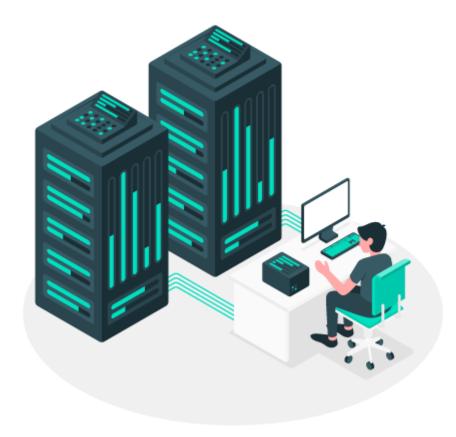


Super Computación y Cálculo Científico Universidad Industrial de Santander


HPC Ecosystems Interaction

SLURM - Simple Linux Utility for Resource Management

GUANE



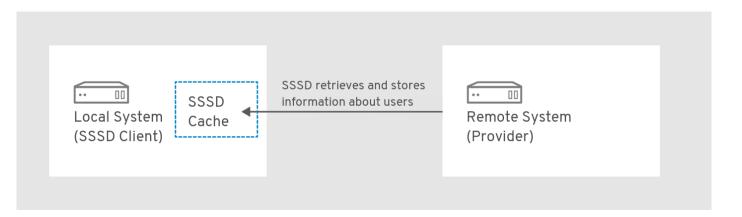
NTP	NFS	Infiniband support
Memory usage limits	HPC Modules – LMOD	PowerShell
	NHC	

SLURM & MUNGE

slurm.conf

SchedulerType -> SchedulerType=sched/backfill
SelectType ->
SelectTypeParameters=CR_Core,CR_Core_Default_Dist_Block
SelectTypeParameters - >
SelectTypeParameters=CR_Core,CR_Core_Default_Dist_Block
PriorityType - > PriorityType=priority/multifactor

SLURM - NHC -> HealthCheckProgram



LDAP - Lightweight Directory Access Protocol

- Good practice in implementing LDAP is using dynamic groups that allow you to assign different levels of access to different storage spaces within the HPC platform.
- Storage spaces such as the user's home folder and project and research group folders must have restrictions implemented through disk quotas in conjunction with LDAP.

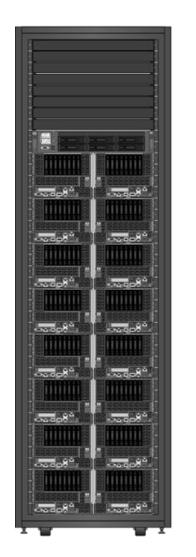
GUANE - GpUs Advanced computiNg Environment

HPC – SC3UIS

Technical specifications - GUANE

16 nodes ProLiant SL390s G7

- 8 nodes:
 - 2 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz.
 - 104 GB RAM
 - 1 disk SAS de 200GB
 - 8 GPU Tesla M2075
- 3 nodes:
 - 2 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz.
 - 104 GB RAM
 - 1 disk SAS de 200GB
 - 8 GPU Tesla S2050
- 5 nodes:
 - 2 Intel(R) Xeon(R) CPU E5640 @ 2.67GHz
 - 104 GB RAM
 - 1 disk SAS de 200GB
 - 8 GPU Tesla S2050


Network

- 10Gbit/s Ethernet Administration
- 40 Gb/sec Infiniband

GUANE - GpUs Advanced computiNg Environment

HPC – SC3UIS

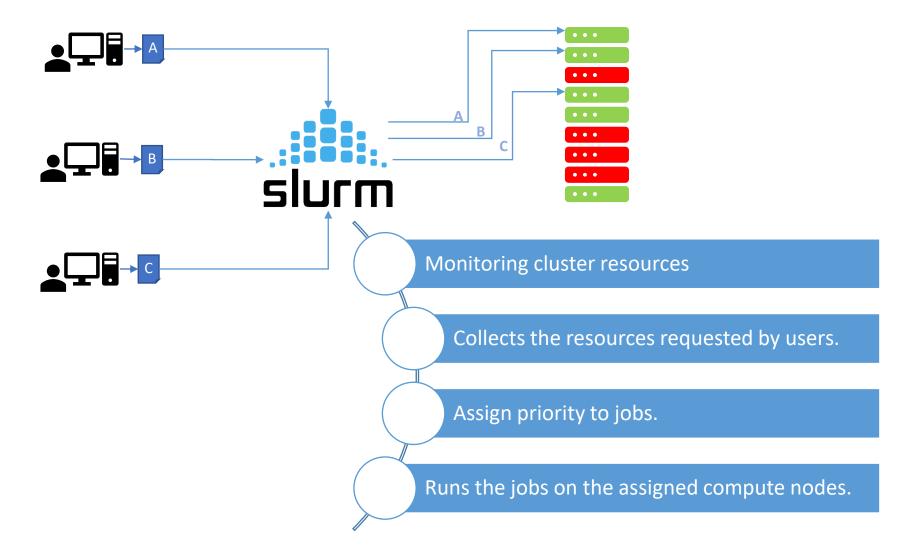
OTHER NODES

THOR Technical Specifications

- ProLiant DL580 Gen9
- 4 Intel(R) Xeon(R) CPU E7-8867 v3 @ 2.50GHz 128 Cores
- 1320732708 kB 1.2TB RAM

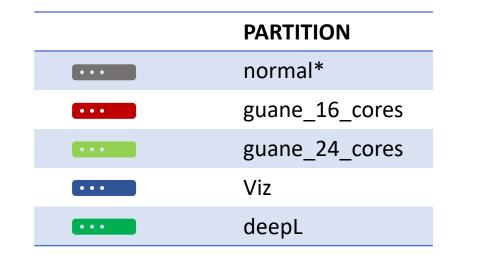
YAJÉ

Technical Specifications

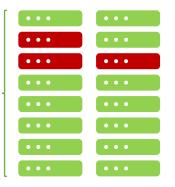

- ProLiant ML350 Gen9
- 1 Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz 6 Cores
- 49031292 kB 48GB RAM
- 1 NVIDIA GeForce GTX Titan X 12 GB

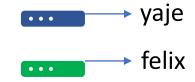
FELIX (Framework to Enhance artificiaL Intelligence applications eXecution) Technical Specifications

- ProLiant DL580 G7
- 4 Intel(R) Xeon(R) CPU X7560 @ 2.27GHz 64 Cores
- 131844368 kB 128GB RAM
- 2 NVIDIA GeForce GTX Titan X 12 GB



SLURM is open-source Linux cluster management and job management software.


Partitions


Computing nodes are grouped into logical sets called partitions that depend on their hardware characteristics or function:

•••	•••
•••	•••
•••	•••
•••	•••
•••	•••
•••	• • •
•••	•••
•••	•••

guane01 – guane16

SSH username@ip-address or hostname

sinfo Shows the information of the nodes and partitions. An asterisk (*) after the partition name indicates that it is the default partition. An asterisk (*) after the node status indicates that it is not responding.

[user_name@guane ~]# sinfo

PARTITION	AVAIL	TIMELIMIT	NODES		NODELIST
normal*	up	infinite	4	mix	guane[03,05,09,16]
normal*		infinite			guane[01-02,04,10,12-15]
normal*	up	infinite	2	idle	guane[06,11]
guane_16_cores		infinite	2	mix	guane[03,05]
guane_16_cores		infinite	1		guane06
guane_24_cores		infinite			guane[09,16]
guane_24_cores	up	infinite	8	alloc	guane[01-02,04,10,12-15]
guane_24_cores	up	infinite	1		guanell
Viz	up	infinite	1	idle	yaje
deepL	up	infinite	1	alloc	felix

squeue -u student_30

• Displays the job queue for user student_30

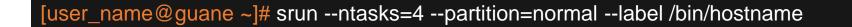
JOBID	PARTITION	NAME	USER	ST	TIME	NODE	NODELIST(REASON)
18276	deepL	mafft_09_mpi	druedap	R	7:46:29	1	felix
18277	normal	gisaid_04	druedap	R	7:39:41	1	guane02
18282	guane_24_cores	gisaid_03	druedap	R	2:33:47	1	guane04

[user_name@guane ~]# squeue

JOBID	PARTITION	NAME	USER	ST	TTME	NODE	NODELIST(REASON)
			-				
17772	guane_24_cores	boinc	latorresn	R	23-08:13:22	1	guane10
18014	guane_24_cores	siml	ccbernalc	R	10-22:24:19	1	guane15
18015	normal		geramirezc	R	10-21:48:41	1	guane01
18046	guane_24_cores	siml	ccbernalc	R	9-12:22:39	1	guane13
18252	normal	cubes3.sh	jmpachecoa	R	22:22:32	1	guane03
18275	guane_24_cores	siml	arromerob	R	8:28:06	1	guane14
18276	deepL	mafft_09_mpi	druedap	R	7:47:35	1	felix
18277	normal	gisaid_04	druedap	R	7:40:46	1	guane02
18279	guane_24_cores	siml	arromerob	R	6:09:15	1	guane12
18281	normal	bash	emvargasd	R	4:40:48	1	guane16
18282	guane_24_cores	gisaid_03	druedap	R	2:34:52	1	guane04
18283	guane_16_cores	cubes1.sh	crcarvajal	R	1:28:47	1	guane05
18284	guane_24_cores	cubes2.sh	crcarvajal	R	1:26:58	1	guane09

STATUS

R = Running


PD = Pending

CA = Cancelled

srun options

• Allows you to run an application directly with options specified by the user in options parameters.

[user_name@guane ~]# srun -n 4 -p normal -l /bin/hostname

- 2: guane01.uis.edu.co
- 1: guane01.uis.edu.co
- 0: guane01.uis.edu.co
- 3: guane01.uis.edu.co

salloc options

- Gets the assignment of a job with console access.
- The resources reserved for the job are those specified in options.
- Allows you to make an interactive reservation.

Interactive Reservation

[user_name@guane ~]# salloc --nodes=1 --partition=normal --exclusive srun --pty /bin/bash

[user_name@guane ~]# srun --nodes=1 --partition=normal --exclusive --pty /bin/bash

Environment Modules– Software in GUANE

- Modules are a packaging of environment variables within a script.
- One module is defined per application, which defines an appropriate environment for its execution.
- Command list:
 - module available
 - module load MODULE_NAME
 - module unload
 - module list
 - module purge

H - camp

Environment Modules

module avail

• Shows all the modules available on the platform.

Analytics/Anaconda/python3 Analytics/Darknet/1.0 Analytics/Julia/1.0.5		Chemistry/gamess/2019R2 Chemistry/gromacs/2018.8_GPU Chemistry/gromacs/2019.3	/opt/	ohpc/pub/modulefiles containers/docker/19.03.9 devtools/cmake/3.14.3 devtools/cuda/7.5	
Analytics/Julia/1.2.0 Analytics/Octave/5.1.0	(D)	Chemistry/nwchem/6.8 Chemistry/orca/4.0.1.2		devtools/cuda/8.0 devtools/cuda/9.1	
Bioinformatics/Bioconda/python3 Bioinformatics/Geneious/9.1.8 Bioinformatics/NGSEP/4.0.1 Bioinformatics/SpreaD3/0.9.6 Bioinformatics/TempEst/1.5.3		Chemistry/orca/4.0.1.2 Chemistry/orca/4.2 EasyBuild/3.9.4 Matlab/R2020a QuantumATK/2018.06-SP1-1/2018.06-SP1-1 QuantumATK/2019.03-SP1/2019.03-SP1	(D)	devtools/cuda/10.1 devtools/gcc/5.3.0 devtools/gcc/6.2.0 devtools/gcc/7.4.0 devtools/gcc/8.3.0	(D)
Bioinformatics/clustalOmega/1.2.4 Bioinformatics/jmodeltest/2.1.10 Bioinformatics/megaCC/10.1.8 CAE/ansys/2020r1 CFD/OpenFOAM/2.4.0		QuantumExpresso/6.5 autotools boinc/7.14.2 clustershell/1.8.2 cmake/3.15.4		<pre>devtools/gcc/9.2.0 devtools/globalarrays/5.6.1 devtools/intel/2016.4 devtools/intel/2017.8 devtools/intel/2019.4</pre>	(D)
CFD/0penF0AM/1906	(D)	comsol/5.3a		devtools/intel/2020.1	(D)

ncurses-6.1-gcc-8.3.0-fazhf5h openblas-0.3.3-gcc-8.3.0-byhg6e2 pcre-8.42-gcc-8.3.0-4rago5n pkgconf-1.4.2-gcc-8.3

Where:

D: Default Module

Use "module spider" to find all possible modules. Use "module keyword key1 key2 ..." to search for all possible modules matching any of the "keys".

H - camp

Environment Modules

module load module_name

 Loads the environment variables corresponding to the selected module (*moduLe_name*)

[user_name@guane ~]# module load CFD/OpenFOAM/1906

module list

 List all modules that have been loaded with the module load command. You should keep in mind that you can load one or more modules simultaneously.

H - camp

Environment Modules

module unload module_name

Removes all environment variables corresponding to the selected module(*moduLe_name*)

[user_name@guane ~]# module unload CFD/OpenFOAM/1906

module purge

• Removes all environment variables from all modules that are loaded in the current session

BATCH JOB SCRIPT

myjob.slurm

#!/bin/bash

Resource request #SBATCH --partition=guane_16_cores #SBATCH --nodes=1 #SBATCH --ntask=1 #SBATCH --ntasks-per-node=1 #SBATCH --mem=1G

Job Execution Time #SBATCH --time=1-12:30:00

Job name and output files #SBATCH --job-name=myjob #SBATCH --output=myjob.out #SBATCH --error=myjob.err

Loading of the environment module module load CFD/OpenFOAM/1906 # Execution blockMesh

Preliminaries

- Specify the command interpreter (Bash).
- It should always be the first line.

SLURM Directives

- They should always start with #SBATCH
 - They are ignored by bash but interpreted by SLURM.
- Comments can be made before, between, or after directives.
- They must be placed before loading the modules and executing the job.

Script commands

- Loading the modules required for the execution of the work
- Commands that you want to execute in the computing nodes
 - Executable of the loaded application.
 - Programming commands can be written in bash.

sbatch batch_file

- Sends the **batch_file** to SLURM for execution.
- If the submission is successful, SLURM returns the job ID

[user_name@guane ~]# sbatch myjob.slurm

[user_name@guane ~]# squeue -u druedap

JOBID	PARTITION	NAME	USER	ST	TIME	NODE	NODELIST(REASON)
18276	deepL	mafft_09_mpi	druedap	R	7:46:29	1	felix
18277	normal	gisaid_04	druedap	R	7:39:41	1	guane02
18282	guane_24_cores	gisaid_03	druedap	R	2:33:47	1	guane04

scancel jobid

- Sends a signal to the job and/or its threads.
- By default, the signal sent is SIGKILL for the termination of the job.
- The job that is canceled is the one that corresponds to jobid.
- The **jobid** is obtained by executing the **sinfo** command.

[user_name@guane ~]# scancel 12345

• Filters can be used for job cancellation

[user_name@guane ~]# scancel --user=sutedent_30

#!/bin/bash

Resource request #SBATCH --partition=normal #SBATCH --nodes=1 #SBATCH --ntasks=16 #SBATCH --ntasks-per-node=16

Job Execution Time #SBATCH --time=0-00:10:00

Job name and output files #SBATCH --job-name=cavity #SBATCH --output=cavity_%j.out #SBATCH --error=cavity_%j.err

Loading of the environment module module load CFD/OpenFOAM/2.4.0

Execution

blockMesh# (generate mesh information)iconFoam# (running the PISO solver)foamToVTK#(convert to VTK format, optional)

Download the examples * wget http://www.hpc.lsu.edu/training/weekly-materials/Downloads/intro_of.tar.gz

- Unzip the sample file tar zxf intro_of.tar.gz
- Enter the folder of the first example to test cd intro_of/cavity
- Create the batch job script nano cavity.slurm
- Launch of work in SLURM sbatch cavity.slurm

Recommendations and others

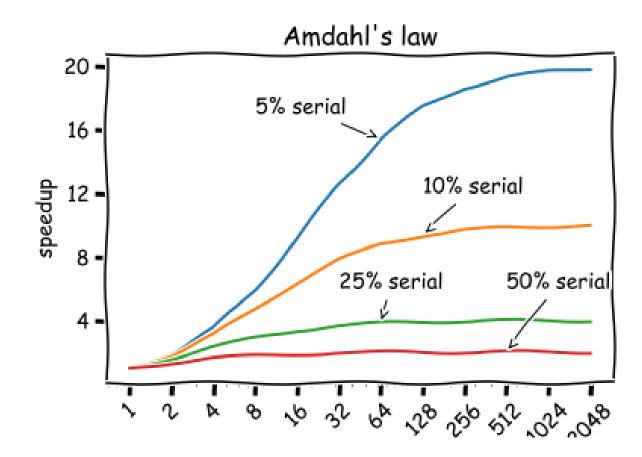
- SSH login
- Multi-factor authentication
- How Many login nodes are there?
- Connection troubleshooting guide.
- Live Status from services.
 - Nodes alive
 - Filesystems
 - Mass Storage systems
 - Planned Outages
- System Ticket platform.

- Wiki Documentation
 - Software
 - Interactive Nodes
 - Data sharing approach
 - FAQs.

- Don't run jobs in login nodes.
- Don't run may jobs at time.
- Don't use all user space on Scratch partition.
- Clean up your \$HOME directory frecuently

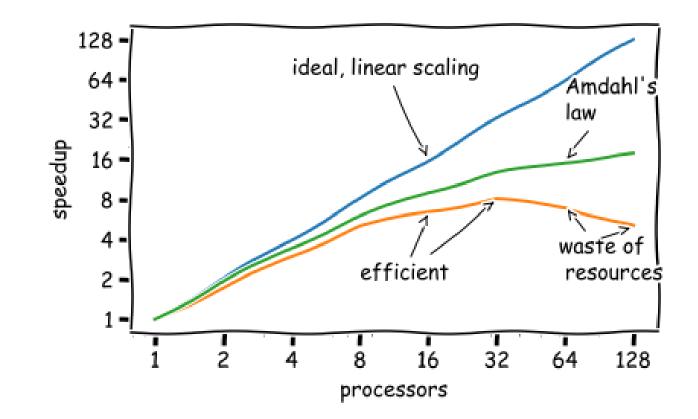
These general recommendations may change over time and may need to be adjusted for your HPC workloads

Remember that HPCs are shared systems and try avoid allocating resources which you don't use



Job Generator

	demo.jobg	enerator.local 🔒		(i) + (b)
Super Computación y Cálculo Científico UIS		SLURM	JOB SCRIPT GENERATOR	
	•			
Enter your cluster and job specs to	o create a template job script.			
Job Name: grom.job		Program here:		
grom		module load gcc/5.2.0 o	penmpi/1.10.2 gromacs/2016.3-CUDA	
Email Address: Jo	bb events:		bind=gntasks=\$SLURM_NTASKS gm	
user@mail.com	🗹 Begin 🗌 End 🗹 Abort			4
Cluster: Partition:			grom.job	
guane 💠 manycores16	Aditional Features	### Number of node	es requested.	Сору
Especific features for: manycores16 CPU_WTM_E5-640 GPU_F_S2050	Gpu gres: 1 ♀ ✓ Exclusive □ Requeue on node fail	#SBATCHtime=00-0	y per core in MB. -cpu=50000M imit in Days-HH:MM:SS)5:10:00	
Number of Nodes: Tasks (process 2 2 4 Memory per core:	ses): Tasks per node:	#SBATCHmail-user #SBATCHmail-type ### File in which to s #SBATCHoutput=gr	=begin,fail tore job output. rom_%j.out tore job error messages.	
50000	Э МВ	-	un your programs here ##	
Walltime:	10 🗘 M 00 🗘 S	module load gcc/5.2.	0 openmpi/1.10.2 gromacs/2016 cel-bind=gntasks=\$SLURM_NTA	
Output File: grom.%j.out E	rror File: grom.%j.err	## sbatch grom.job		Generate
	grom			


9

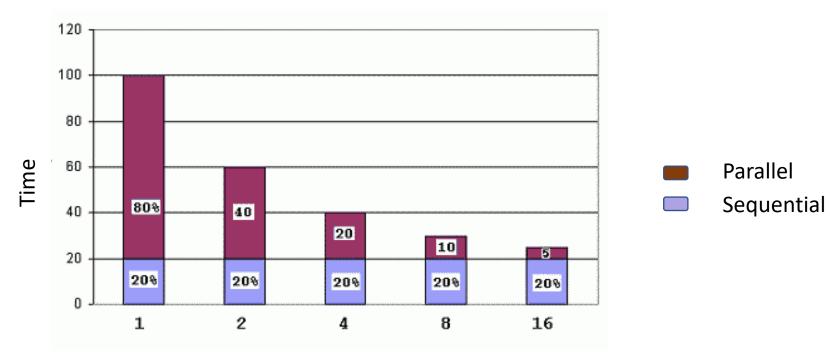
- Performance improvements from parallel execution do not scale linearly.
- Parallel programming allows application to take advantage of parallel hardware, serial code will not 'just work'.
- Common case of distributed memory parallelism, MPI (Message passing Interface)

Scope:

- Calculate de expected computational efficiency of the job.
- Test the behavior of a program when executed in parallel.
- Scalability from **1...n** processors.

Tools:

- **Speed Up**: factor that indicates the gain through parallelization.
- **Efficiency**: resource use efficient metric.


• Efficiency is archived when the measurement is kept at factor 0.5.

$$S(n) = T(1)/T(n)$$

$$E(n) = \frac{S(n)}{n} = \frac{T(1)}{n * T(n)}$$

Performance

Processors

$$S(n) = T(1)/T(n)$$
 $E(n) = \frac{S(n)}{n} = \frac{T(1)}{nT(n)}$

H - camp

N =	2	4	8	16
S =	100/(40+20) = 1.666	2.5	3.333	4
E =	100/(2*60) = 0.83 = 1.666/2	0.625	0.416	0.25

Task	Task per Node	Time	Speedup	Efficiency
1	1	1:00:27	1,0	1,0
2	2	0:33:47	1,8	0,9
4	4	0:18:02	3,4	0,8
8	8	0:09:13	6,6	0,8
16	16	0:05:06	11,9	0,7
32	16	0:02:31	24,0	0,8
64	16	0:01:18	46,5	0,7
128	16	0:00:48	75,6	0,6
256	16	0:00:34	106,7	0,4
512	16	0:00:31	117,0	0,2
640	640 16 0:00:23 157		157,7	0,2
1024	32	0:00:22	164,9	0,2

Compilation

• GNU

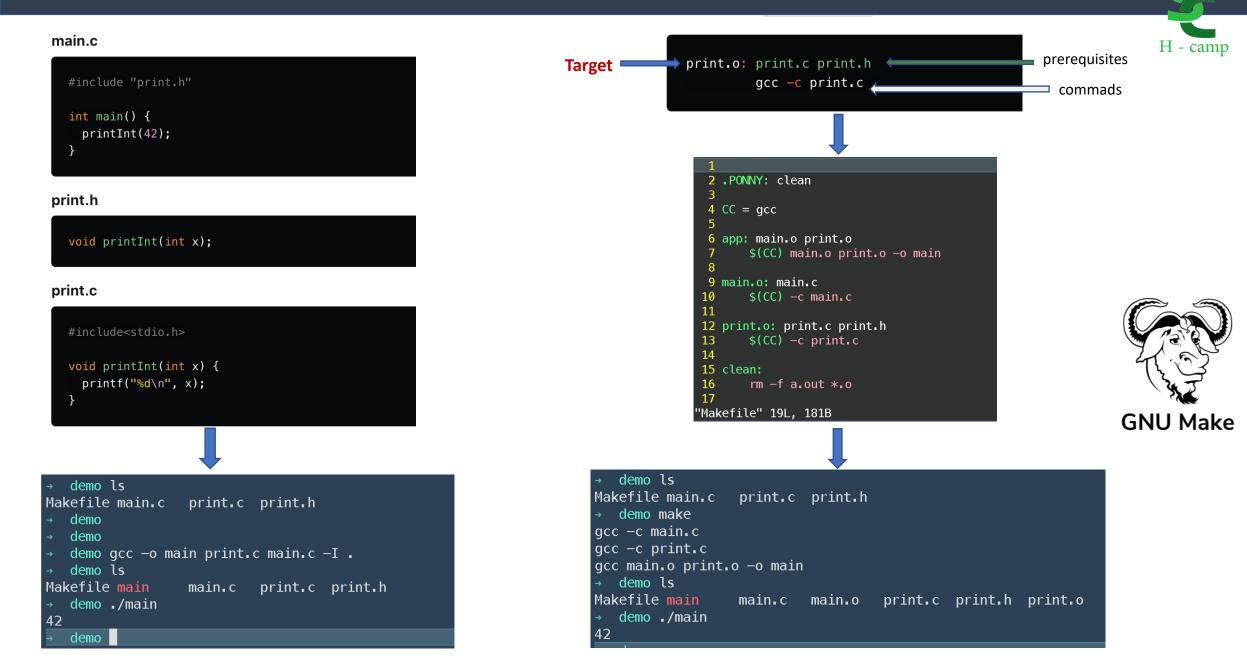
- INTEL
- NVIDIA

FAMIILIES

- G++
- Fortran
- Nvcc
- Icc

•

- Ifort
- Openmp
- Mpi


•••

gcc -Olevel [options] [source files] [object files] [-o output file]

option	optimization level	execution time	code size	memory usage	compile time
-00	optimization for compilation time (default)	+	+	-	-
-01 or -0	optimization for code size and execution time	-	-	+	+
-02	optimization more for code size and execution time			+	++
-03	optimization more for code size and execution time			+	+++
-Os	optimization for code size				++
-Ofast	O3 with fast none accurate math calculations			+	+++

Compilation Automation Tools

Compilation take account of

• Make

• Carefully review of phase options

- ./configure --help
- Verbose mode VERBOSE=1
- Use compile parallelism. -j

• Guide when an error comes out

- Compile with single thread –j1
- Always look for the first error in the list
- Compile again
- Google
- Compile without optimizations
- Patience.

Principal

- \$HOME
- \$SCRATCH
- Others shared file system

[cbernal@guane03 ~]\$ df -h					
Filesystem	Size	Used	Avail	Use%	Mounted on
devtmpfs	52G	0	52G	0%	/dev
tmpfs	52G	6.2M	52G	1%	/dev/shm
tmpfs	52G	50M	52G	1%	/run
tmpfs	52G	0	52G	0%	/sys/fs/cgroup
/dev/mapper/centos_guane03-root	60G	5.4G	55G	9%	/
/dev/sda1	1014M	361M	654M	36%	/boot
/dev/mapper/centos_guane03-var	30G	1.4G	29G	5%	/var
/dev/mapper/centos_guane03-opt	30G	52M	30G	1%	/opt
/dev/mapper/centos_guane03-tmp	40G	293M	40G	1%	/tmp
192.168.66.49:/datasets	7.3T	5.2T	2.2T	71%	/datasets
192.168.38.10:/courses	1.4T	104M	1.4T	1%	/courses
192.168.38.10 :/home	3.0T	771G	2.3T	26%	/home
192.168.38.10:/covid	1.1T	232G	885G	21%	/covid
192.168.38.10:/scratch	2.5T	2.0T	495G	81%	/scratch
192.168.38.50:/opt/ohpc/admin	500G	461G	40G	93%	/opt/ohpc/admin
192.168.38.50:/usr/local/src	300G	184G	117G	62%	/usr/local/src
192.168.38.50:/opt/ohpc/pub	500G	461G	40G	93%	/opt/ohpc/pub
192.168.66.43 :/girg	5.9T	1.7T	4.2T	29%	/girg
[charpa]@guapa@2 .]¢					

You can use **/dev/shm** to improve the performance of application software in parallel tasks or overall Linux system performance. On heavily loaded system, it can make tons of difference.

- dd if=/dev/zero of=/dev/shm/test1.img bs=1G count=1
- dd if=/dev/zero of=\$HOME/test1.img bs=1G count=1
- dd if=/dev/zero of=/tmp/test1.img bs=1G count=1

Last login: Sun Nov 20 21:13:05 2022 from toctoc.sc3.uis.edu.co				
Hostname: guan Distribucion: Kernel: 3.10.0	CentOS Linux		.2009 (Core)	
System Load:	0.00, 0.01, 0.05		System Uptime:	55 days 21 hours 28 min 18 sec
	0.0%		Swap Usage:	1.3%
Memory Usage: Local Users:	2		Whoami:	cbernal

In a HPC SysAmin team, Consultants handle thousands of support requests per year. In order to ensure efficient timely resolution of issues include as much of the following as possible when making a request.

- * Error messages
- * Job Ids
- * Location of relevant files
- * Input/output
- * Job scripts
- * Source code
- * Executables
- * Output of module list
- * Any steps you have tried
- * Steps to reproduce

Super Computación y Cálculo Científico UIS