
Good Practices For 
(Parallel) Programing 

Carlos Jaime Barrios Hernández, PhD
@carlosjaimebh



Realism and Performance

https://dual.sphysics.org/

Multi-GPU DSPH  Analysis Project Video
N. Gutierrez, S. Gelvez, J. Chacon, I. Gitler and C.Barrios

https://dual.sphysics.org/


The Challenge

• Models
• Data

• Models

• Data• Data

Experimentation
/ Observation Simulation

VisulasationTheory

Evalua&on 

Reproduction

Visualisation

• Accuracy
• Utility

Numerical
Analysis

• Reproductibility
• Reliability

Implementation

• Efficience
• Performance



What is Scien7fic Compu7ng?



The Scientific Computing Process

Mesh

t

SimulationresultsPhysical 
model Mesh 

generation VisualizationSolver



Introducing Algorithms…

• The word Algorithm means “a
process or set of rules to be
followed in calculations or other
problem-solving operations”.
Therefore Algorithm refers to a set
of rules/instructions that step-by-
step define how a work is to be
executed upon in order to get the
expected results.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/fundamentals-of-algorithms/
https://www.geeksforgeeks.org/introduction-to-algorithms/


Introducing Algorithms…
• Similarly, algorithms help to do a task

in programming to get the expected
output. The Algorithm designed are
language or implementation
independent, i.e. they are just plain
instructions that can be implemented
in any language, and yet the output
will be the same, as expected.

• Language implementantion (or other
implementation) is a traduction to be
executed in a context (or runtime).

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://en.wikipedia.org/wiki/Algorithm

https://www.geeksforgeeks.org/introduction-to-algorithms/
https://en.wikipedia.org/wiki/Algorithm


Characteris*cs of an Algorithm
• Clear and Unambiguous: Algorithm should be

clear and unambiguous. Each of its steps should
be clear in all aspects and must lead to only one
meaning.

• Well-Defined Inputs: If an algorithm says to take
inputs, it should be well-defined inputs.

• Well-Defined Outputs: The algorithm must
clearly define what output will be yielded and it
should be well-defined as well.

• Finite-ness: The algorithm must be finite, i.e. it
should not end up in an infinite loops or similar.

• Feasible: The algorithm must be simple, generic
and practical, such that it can be executed upon
will the available resources. It must not contain
some future technology, or anything.

• Language Independent: The Algorithm designed
must be language-independent, i.e. it must be
just plain instructions that can be implemented
in any language, and yet the output will be same,
as expected.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://en.wikipedia.org/wiki/Algorithm

https://www.geeksforgeeks.org/introduction-to-algorithms/
https://en.wikipedia.org/wiki/Algorithm


Possible Analysis of an Algorithm
• Priori Analysis: “Priori” means “before”. Hence Priori analysis means

checking the algorithm before its implementation. In this, the algorithm is
checked when it is written in the form of theoretical steps. This Efficiency
of an algorithm is measured by assuming that all other factors, for 
example, processor speed, are constant and have no effect on the 
implementation. This is done usually by the algorithm designer. It is in this
method, that the Algorithm Complexity is determined.
• Posterior Analysis: “Posterior” means “after”. Hence Posterior analysis

means checking the algorithm after its implementation. In this, the 
algorithm is checked by implementing it in any programming language and 
executing it. This analysis helps to get the actual and real analysis report 
about correctness, space required, time consumed etc.

• Time Factor: Time is measured by counting the number of key operations such as 
comparisons in the sorting algorithm.

• Space Factor: Space is measured by counting the maximum memory space required
by the algorithm.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


Complexity (1/2)
• Space Complexity: Space complexity of an algorithm refers to the 

amount of memory that this algorithm requires to execute and get
the result. This can be for inputs, temporary operaDons, or outputs.

How to calculate Space Complexity?
The space complexity of an algorithm is calculated by determining
following 2 components:

• Fixed Part: This refers to the space that is definitely required by the algorithm. 
For example, input variables, output variables, program size, etc.

• Variable Part: This refers to the space that can be different based on the 
implementaKon of the algorithm. For example, temporary variables, dynamic
memory allocaKon, recursion stack space, etc.

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


• Time Complexity: Time complexity of an algorithm refers to the amount of 
time that this algorithm requires to execute and get the result. This can be
for normal operations, conditional if-else statements, loop statements, etc.

How to calculate Time Complexity?
The time complexity of an algorithm is also calculated by determining
following 2 components:
• Constant time part: Any instruction that is executed just once comes in this

part. For example, input, output, if-else, switch, etc.
• Variable Time Part: Any instruction that is executed more than once, say n 

times, comes in this part. For example, loops, recursion, etc.

Complexity (2/2)

From: https://www.geeksforgeeks.org/introduction-to-algorithms/

https://www.geeksforgeeks.org/introduction-to-algorithms/


From Space Complexity to Big O Notation
• The space complexity of an algorithm or a computer program is the amount of memory space required

to solve an instance of the computational problem as a function of characteristics of the input. It is the 
memory required by an algorithm until it executes completely.

• Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such
O(n), O(n\log n), O(n⍺), O(2n), etc., where n is a characteristic of the input influencing space complexity.

From: https://en.wikipedia.org/wiki/Space_complexity

• Analogously to time complexity classes DTIME(f(n)) and NTIME(f(n)), the complexity
classes DSPACE(f(n)) and NSPACE(f(n)) are the sets of languages that are decidable by deterministic
(respectively, non-deterministic) Turing machines that use O(f(n)) space. 

• The complexity classes PSPACE and NPSPACE allow f to be any polynomial, analogously
to P and NP. That is,

https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/DTIME
https://en.wikipedia.org/wiki/NTIME
https://en.wikipedia.org/wiki/DSPACE
https://en.wikipedia.org/wiki/NSPACE
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/NPSPACE
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/NP_(complexity)


A little about the Big O Notation
• Big O notation is special notation that tells you how fast an algorithm is.

• Big O doesn’t tell you the speed in seconds. Big O notation lets you compare the number of 
operations. It tells you how fast the algorithm grows. 

• This tell you the number of operations an algorithm will make. It’s called Big O notation because
you put a « big O » in front of the number of operations. 

• Also, Big O notation is called as Bachmann–Landau notation or asymptotic notation. 

From: https://github.com/egonSchiele/grokking_algorithms
https://en.wikipedia.org/wiki/Big_O_notation

https://github.com/egonSchiele/grokking_algorithms
https://en.wikipedia.org/wiki/Big_O_notation


Running Time
• It’s the running phase of an algorithm

Linear Time Logarithmic Time

An algorithm is said to take linear
time, or O(n) time, if its time 
complexity is O(n). Informally, this
means that the running time 
increases at most linearly with the 
size of the input.

An algorithm is said to take logarithmic
time when T(n) = O(log n).
Algorithms taking logarithmic time are 
commonly found in operations on binary 
trees or when using binary search.

From: https://en.wikipedia.org/wiki/Time_complexity

Factorial Time

Recall that a factorial is the product of the 
sequence of n integers. For example, the 
factorial of 5, or 5!, is: 5 * 4 * 3 * 2 * 1 = 120. 
We will find ourselves writing algorithms with
factorial time complexity when calculating
permutations and combinations.

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/wiki/Time_complexity


From Fast to Slow Algorithms… 

From: https://github.com/egonSchiele/grokking_algorithms

• O(log n) also kwnon as log @me . Example: Binary Search
• O(n) also known as linear @me. Example: Simple Search
• O(n log n). Example: a fast sor@ng algorithm like Quicksort
• O(n2). Example: a slow sor@ng algorithm, like Selec@on Sort
• O(n!). Example a really slow algorithm , like the traveling salesperson.

https://github.com/egonSchiele/grokking_algorithms


And a Little more of Complexity
• A complexity class is a set of computational problems of related

resource-based complexity. The two most commonly analyzed
resources are time and memory.

• A complexity class is defined in terms of a type of computational problem, a model of 
computation, and a bounded resource like time or memory.

• Complexity classes consist of decision problems that are solvable with a Turing 
machine, and are differentiated by their time or space (memory) requirements. 

• The class P is the set of decision problems solvable by a deterministic Turing 
machine in polynomial time. 

• NP is the class of problems that are solvable by a nondeterministic Turing machine in 
polynomial time.

• Many complexity classes defined in terms of other types of problems (e.g. counting 
problems and function problems) and using other models of computation 
(e.g. probabilistic Turing machines, interactive proof systems, Boolean circuits, 
and quantum computers).

From: https://en.wikipedia.org/wiki/Complexity_class#P_and_NP

The Decision Problem

A representation of the relationships
between several important complexity

classes

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Counting_problem_(complexity)
https://en.wikipedia.org/wiki/Function_problem
https://en.wikipedia.org/wiki/Probabilistic_Turing_machine
https://en.wikipedia.org/wiki/Interactive_proof_system
https://en.wikipedia.org/wiki/Boolean_circuit
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Complexity_class


Deterministic and Non-Deterministic Turing 
Machines



So, why it is important to know all of this?
• Because you can decide how to attack a 

physical problem using computation
• Selecting type of algorithm and possible 

design of the treatment from the 
mathematical representation (Remember
the Big O)

• Selecting the language and optimisation 
possibilities. (Or interepretators as Python)

• Selecting the kind of computer to use 
(computer architecture characteristicis)

• Classical Von-Newman Computer 
• Non Von-Newman Computer (As a Quantum 

Computer)
• Variations and Hybrid Computer (i.e. using

multiple processors : CPUs, GPUs, XPUs, DPUs, 
ASICs, etc.)

• Selectiing Programming Paradigms
(Sequential, Parallel Computing
(Shared Memory, Distributed
Memory, Hybrid Memory))

• Because Big Problems need
Smart Solutions



Now, time to work in Class
(In teams)
1. The Simple Daily Problem

• Propose an algorithm
(flowchart and pseudocode) for 
a simple daily task (i.e. walk to 
the classroom from the door of 
the building to your desktop, 
send a message by whatsapp…)

• Try to Analize complexity and 
other characteristics (i.e. Number
of steps, possible Big O, class of 
complexity)



2. Visualizing different Big O run times

Take a Piece of paper and a pencil. Suppose 
you have to draw a grid of 16 boxes.
You have the possibility of two algorithms:
• Algorithm 1: Draw one box at time. How 

many operations will it take, drawing one 
box at time? 

• Algorithm 2: Fold the paper, again and 
again, and again. Unfold it after four folds. 
How many operations will it tak?

• Taking the Big O notation, what algorithm
is linear and what is logarithmic?

From: https://github.com/egonSchiele/grokking_algorithms

https://github.com/egonSchiele/grokking_algorithms


Coding is a process 

• Know the Problem

• Know and Manage Language Programming Elements and Advantages

• And use them!

• Know Computer Architecture and Its Real Performance (Expected)

• And Exploit them!

• Good Algorithms produce Good Codes 

• Good Practices 

• Experience (and continuous auto-learning)



C or C++ ? (Or any language)

Depending of the oriented programming 

Programming paradigm and oriented
development is a process (scientific, technical
and engineering).
• You need to see the requirements (or

expected outcomes)
• Programability (Remember, the idea is

that you’re a scientists, so your time is to
make science)

• Skills
• Platforms (not only computer machines),

runtime.
• Likes and comfort!

• Not always, the popular is good



Special Recommendations 
about Copying

• Programming in real life, copying is 
strongly encouraged. (The idea is not to 
reinvent the wheel (and not waste time 
getting it wrong) 

• Copying saves time;
• Copying avoids typing mistakes;
• Copying allows you to focus on your 

new programming challenges.



SYNTAX & 
SEMANTIC 
(1/2)

§ Programming language enforces a set of rules, symbols and special words used 
to construct a program.

§ A set of rules that precisely state the validity of the instructions used to construct 
a program is called syntax or 'grammar' else syntax error will be generated.

§ The correctness of the instructions used to write any program is called semantics 
or correct meaning.

§ These set of rules for instructions validity and correctness are monitored by the 
compilers.

§ Semantically one but can have many syntaxes.



SYNTAX & SEMANTIC (2/2)
§ e.g.

§ Pseudocode - an informal high-level description of the operating principle of a 
computer program or other algorithm. 

§ Uses the structural conventions of a programming language, but is intended for 
human reading rather than machine reading.

25/16

To add an integer to a variable q and store the result in q
(semantic), syntaxically (correct), we can write:

q = q + 3; or  q += 3;

www.tenouk.com, ©

http://www.tenouk.com/


(Remember) PSEUDOCODE & 
ALGORITHM (1/3)

§ An informal high-level description of  a 
computer program or algorithm operating 
principle.

§ An algorithm is merely the sequence of steps 
taken to solve a problem which are normally a 
sequence, selection, iteration and a case-type 
statement. 

§ Algorithm is a procedure for solving a problem -
actions to be executed and the order in which 
those actions are to be executed.

§ Every algorithm may have different number line 
of code,  different repetition loops, different 
execution speeds etc.



(Remember) PSEUDOCODE & 
ALGORITHM (2/3)

§ But all the program have similar 
purpose: to sort the given unsorted 
integers in ascending order.

§ Pseudocode uses programming 
language’s  structural conventions ,  
intended for human rather than 
machine reading.

§ helps programmers develop 
algorithms.



(Remember) PSEUDOCODE & 
ALGORITHM (3/3)

Set sum to zero
Set grade counter to one
While grade counter is less than or equal to ten

Input the next grade
Add the grade into the sum 

Set the class average to the sum divided by ten
Print the class average.

IF HoursWorked > NormalMax THEN
Display overtime message 

ELSE
Display regular time message

ENDIF

SET total to zero 
REPEAT

READ Temperature 
IF Temperature > Freezing THEN 

INCREMENT total
END IF

UNTIL Temperature < zero 
Print total



Levels of Representation

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

High Level Language 
Program

Assembly  Language 
Program

Machine  Language 
Program

Control Signal 
Specification

Compiler

Assembler

Machine 
Interpretation

int main()

{

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111 

gcc program.c –o program



High Level Programming Languages

• The primary purpose of a high-level language 
is to permit more direct expression of a 
programmer’s design. 
• High Level code modules can be designed to 

« plug » together piece by piece, allowing 
large programs  to be built out of small, 
comprehensible parts. 
• Ideally, a program written in a high-level 

language may be ported to a different 
machine and run without change.

Compiled code is not the only way to execute high-level programs. An alterna@ve is to trranslate the program on-
the-fly using an intepreter program (e.g., Matlab, Python, etc).



From pseudocode to executable code

• To produce executable code
from a such program, it is
translated to machine
specific assembler language
by a compiler program, wich
is the converted to machine
code by an assembler.

• An executable code is a
special type of file that
contains machine
instructions (ones and zeros),
and running this file causes
the computer to perform
those instructions.



Compiling

• Compiling is the process of turning
a program files into an executable.

• The compilaXon process involves
stages and uXlizes different ‘tools’ 
or other programs such as a 
preprocessor, compiler, assembler, 
and linker in order to create a final 
executable.



Compiling and Running

1. You build a code/program file using 
an specific identifier (i.e., Myfile.c to 
c code or Myfile.cpp to c++ code)

2. Following the syntaxis and rules you 
“compile” your code, using a 
compiler (to see after) (i.e., gcc
Myfile.c –o MyExe, using gcc
compiler)

3. Finally, You use the executable file 
to execute your code (i.e., in 
console mode: ./MyExe)



Compiling Stages 
(Traditional Vision)



More Stages

• Debbuging and Profiling
• Debugging: Intented to determine 

correctness issues.
• Can occurs during compiling process.

• Profiling: Intented to determine 
diagnostic/Performance issues.

• Can occurs after compiling process, i.e., after 
execution or deployment process.

• It exists technics, tools, programs and 
intuition.



First Good 
Practice: Order

• A  program consists of func6ons 
and variables. A func6on constains
statements that specify the 
compu6ng opera6ons to be done, 
and variables store values used 
during the computa6on.

• A  program is structured, actually, 
the program is consis6ng of 6 main 
sec6ons. 

• Structured coding is a good 
prac6ce of good programmers. 
(And allows to develop and 
maintain good codes).



More about the structure

More information in: https://www.atnyla.com/tutorial/basic-structure-of-c-programming/1/160

https://www.atnyla.com/tutorial/basic-structure-of-c-programming/1/160


About Compilers

• A compiler is a special program that
processes statements written in a 
particular programming language and 
turns them into machine language or 
"code" that a computer's processor uses.

• The programmer then runs the 
appropriate language compiler, 
specifying the name of the file that
contains the source statements.

• Depending of the machine, Environment-
specific machine code generation by 
different compilers. 

From: C Programming Learn to Code Sisir Kumar Jena 



Some C Compilers and Standards

Compiler Standard

Amsterdam Compiler Kit Clang, using LLVM backend 
GCC
HP C/ANSI C compiler Microsoft Visual C++ 
Pelles C
Vbcc
Tiny C Compiler 
Intel C Compiler

C K&R and C89/90
C89, C90, C99, and C11 C89/90, C99, and C11
C89 and C99
C89/90 and C99
C99 and C11 (Windows only) C89/90 and C99
C89/90 and some C99 
C89, C90, C99, and C11 C89/90, C99, and C11

More in: https://en.wikipedia.org/wiki/List_of_compilers#C_compilers

https://en.wikipedia.org/wiki/List_of_compilers


2 Good Practice: Use Makefiles
• The make allows to define personal rules 

to compiling your C / C++ code using the 
warning flags automatically. (Also, you 
can add other languages primitives)

• Make is a build automation tool that 
automatically builds executable 
programs and libraries from source 
code by 
reading files called Makefiles which 
specify how to derive the target 
program. 

More information in: https://www.gnu.org/software/make/

https://www.gnu.org/software/make/


About Parallelism
• Implicit parallelism is a 

characteristic of a programming 
language that allows a compiler or 
interpreter to automatically exploit 
the parallelism inherent to the 
computations expressed by some of 
the language's constructs.
• Explicit parallelism is the 

representation of concurrent 
computations by means of primitives 
in the form of special-purpose 
directives or function calls. 

• Concurrency is a property of 
systems in which several 
computations are executing 
simultaneously, and potentially 
interacting with each other.



Elements of Parallelism
1. Computing Problems

• Numerical (Intensive Computing, Large Data Sets)
• Logical (AI Problems)

2. Parallel Algorithms and Data Structures
• Special Algorithms (Numerical, Symbolic)
• Data Structures (Dependency Analysis)
• Interdisciplinary Action (Due to the Computing Problems)

3. System Software Support
• High Level Languages (HLL)
• Assemblers, Linkers, Loaders
• Models Programming
• Portable Parallel Programming Directives and Libraries
• User Interfaces and Tools

4. Compiler Support
• Implicit Parallelism Approach

• Parallelizing Compiler
• Source Codes

• Explicit parallelism Approach
• Programmer Explicitly

• Sequential Compilers, Low Level Libraries
• Concurrent Compilers (HLL)

• Concurrency Preserving Compiler
5. Parallel Hardware Architecture

• Processors
• Memory
• Network and I/O
• Storage



Thinking in Parallel (computing) – The Typical 
Visions



Concurrency vs Concurreny/Parallelism
Behavior

Shared Processing Ressources
Switching
Non Parallel Threards (Non Multitasking, Yes 
Multithreading)

Non Shared Processing Ressources (However
the Memory...)
Switching
Parallel Threards (Multitasking, Multithreading)



Concurrency vs Concurreny/Parallelism Example

Dual System
- Multiple Paralle Threads in Runtime
- Strategies to Paralellism following models 
(PRAM, LogP, etc) addressed to exploit 
memory and overhead reduction

Single System
- Multiple Threads in Runtime
- Almost Synchronization Strategies
- Memory Allocation



From J. Armstrong Notes: http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

Any Parallel System is concurrent: Simulatenous Processing, Parallel but limited ressources.

http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html


Advantages of Concurrency

§ Concurrent processes can reduce duplication in code.

§ The overall runtime of the algorithm can be significantly reduced.

§ More real-world problems can be solved than with sequential 
algorithms alone.

§ Redundancy can make systems more reliable.



Disadvantages of Concurrency

§Runtime is not always reduced, so careful planning is 
required

§Concurrent algorithms can be more complex than 
sequential algorithms

§Shared data can be corrupted

§Communications between tasks is needed



3. Good Practice: Follow a workflow for Concurrent Programming

§ Analysis
§ Identify Possible Concurrency
§ Hotspot: Any partition of the code that has a significant amount of activity
§ Time spent, Independence of the code…
§ Design and Implementation
§ Threading the algorithm 
§ Tests of Correctness
§ Detecting and Fixing Threading Errors
§ Tune of Performance
§ Removing Performance Bottlenecks 
§ Logical errors, contention, synchronization errors, imbalance, excessive overhead
§ Tuning Performance Problems in the code (tuning cycles)  



Design Spaces of Parallel Programming*

•Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill, 
Software Pattern Series, Addison-Wesley 2004

FC
• Finding Concurrency (Structuring Problem to expose 

exploitable concurrency)

AS
• Algorithm Structure (Structure Algorithm to take 

advantage of Concurrency)

SS
• Supporting Structures (Interfaces between Algorithms and 

Environments)

IM
• Implementation Mechanisms (Define Programming 

Environments)



Parallel Computing
l Parallel Computing exploit 

Concurrency
l In “system” terms, concurrency exists 

when a problem can be decomposed in 
sub problems that can safely executed 
at same time (in other words, 
concurrently)

https://ignorelist.files.wordpress.com/2012/01/the-art-of-
concurrency.pdf

https://ignorelist.files.wordpress.com/2012/01/the-art-of-concurrency.pdf


TraditionalWay

Designing and Building Parallel Programs, by Ian Foster in http://www.mcs.anl.gov/~itf/dbpp/

http://www.mcs.anl.gov/~itf/dbpp/


Descomposition

Tasks Decomposition : Task Parallelism
Data Decomposition: Data Parallelism /Geometric 
Parallelism



Task Granularity

Core 0

overhead

task

overhead

task

overhead

task

Core 1 Core 2 Core 0

overhead

task

Core 1 Core 3

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

Fine-grained decomposition Coarse-grained decomposition



Higher Performance
Lower Accuracy
(Using Nodes)

Coarse grid

Lower Performance
Higher Accuracy

(Using Processors)

Fine grid Dynamic grid

Target performance where 
accuracy is required
(Using Processors and 

Nodes)

Granularity in Implementations



Tasks must be assigned to threads for 
execution

TaskDecomposition
Considerations

• What are the tasks and how are defined?
• What are the dependencies between task 

and how can they be satisfied?
• How are the task assigned to threads?

Task

Task

Job



TaskDependencies

Order Dependency Data Dependency

Enchantingly Parallel Code: Code without dependencies 

Process 1

Process 2

Out

in In 1 In 2

Process 1

Process 3

Process 2

Out 1 Out 2

Process 3

Out



Data	Decomposition	
Considerations
(Geometric	Decomposition)	

Data Structures must be (commonly) divided in arrays or logical 
structures.

- How should you divide the data into 
chunks?
- How should you ensure that the tasks for 
each chunk have access to all data 
required for update?
- How are the data chunks assigned to 
threads?



How	should	you	divide	data	into	chunks?

By individual elements By rows

By groups of columns By blocks



• Data Decomposition have an additional dimension.
• It determines what the neighboring chunks are and how any 

exchange of data will be handled during the course of the chunk 
computations.

2 Shared Borders

• Regular shapes : Common Regular data organizations.
• Irregular shapes: may be necessary due to the irregular 

organizations of the data.

5 Shared Borders

The	Shape	of	the	Chunk



Howshouldyouensure that the tasks foreach
chunkhaveaccess to	alldata	required forupdate?

• Using Ghost Cells
l Using ghost cells to hold copied data from a neighboring chunk.

Original split with ghost cells

Copying data into ghost cells



Tasks and	DomainDecomposition
Patterns
• Task Decomposition Pattern
l Understand the computationally intensive parts of the problem.
l Finding Tasks (as much…)

l Actions that are carried out to solve the problem
l Actions are distinct and relatively independent.

• Data Decomposition Pattern
l Data decomposition implied by tasks.
l Finding Domains:

l Most computationally intensive part of the problem is organized around the manipulation of large 
data structure.

l Similar operators are being applied to different parts of the data structure.
l In shared memory programming environments, data decomposition will be implied by task 

decomposition.



NotParallelizable Jobs,	Tasks and	
Algorithms

• Algorithms with state
• Recurrences
• Induction Variables
• Reductions
• Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering.  By Fred Brooks. Ed 
Addison-Wesley Professional, 1995 



64

How HPC fits into Scientific Computing

Physical Processes

Mathematical Models

Numerical Solutions

Data Visualization,
Validation, 

Physical insight

Air flow around
an airplane

Navier-stokes 
equations

Algorithms, BCs, solvers,
Application codes, 
supercomputers

Viz software

HPC



Advantages of 
Parallelization

§ Cheaper, in terms of Price/Performance Ratio

§ Faster than equivalently expensive uniprocessor 
machines 

§ Handle bigger problems

§ More scalable: the performance of a particular 
program may be improved by execution on a large 
machine 

§ More reliable: In theory if processors fail we can 
simply use others 



Concurrent 
Design Models 

Features

• Efficiency
• Concurrent applications must run quickly 

and make good use of processing 
resources.

• Simplicity
• Easier to understand, develop, debug, 

verify and maintain.
• Portability

• In terms of threading portability.
• Scalability

• It should be effective on a wide range of 
number of threads and cores, and sizes 
of data sets.



Design 
Evaluation 

Pattern

• Production of analysis and 
decomposition:
• Task decomposition to identify 

concurrency
• Data decomposition to indentify data 

local to each task
• Group of task and order of groups to 

satisfy temporal constraints
• Dependencies among tasks

• Design Evaluation
• Suitability for the target platform
• Design Quality
• Preparation for the next phase of the 

design 



Algorithm Structures

Organizing by Tasks

Task Parallelism
Divide and Conquer

Organizing by Data Decomposition

Geometric Decomposition
Recursive Data

Organizing by Flow of Data

Pipeline
Event-Based Coordination



Start

Organize By Tasks

Linear

Task 
Parallelism

Recursive

Divide and Conquer

Organize By Data Decomposition

Linear

Geometric 
Decomposition

Recursive

Recursive Data

Organize By Flow of Data

Linear

Pipeline

Recursive

Event-Based 
Coordination

Algorithm Structure Decision Tree 
(Major Organizing Principle)



How to Exploit (Better) Concurrency

• (Remember) Mixed Approach 
(Algorithms/Applications -
Hardware/System.

• Good Techniques from Software 
Engineering 

• Good Problem knowledge from 
scientific (domain) expertise

• Confrontation and Performance 
Evaluation



4 Good Practice: Know your HPC support 
Platform



Shared, Distributed and Hybrid Memory Architectures
l Memory Exploitation involves Memory 

Hierarchy
l Models as PRAM, BSP, etc..

l All modern architectures to HPC allows 
different memory models
l Shared Memory (Inside Nodes)
l Distributed Memory (Among Nodes)
l Hybrid Memory

l Using Accelerators (GPUs, MICs)
l Interaction Nodes/Processors



Flynn’s Taxonomy*

* Proposed by M. Flynn in 1966



The Moore Evolution

Gordon Moore (In the 
60’s)



The (Post) Moore Era

After 120 years… 
The Moore’s Law 

is Dead

Jack Dongarra



Parallel Computing Evolution 
(From the LLNL Vision by Rob Neely )

Rob Neely



Configurable Architectures

Dual Cores
(Symmetric Multithreading)

MultiCore
Arrays

Scalar + Many 
Cores

(Highly threaded 
workloads)

Manycore
arrays

Large Scale Cores
(High Single Thread 

Performance)



PC/Workstation/
Node

Cluster Computing Architecture

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Network Interface Hardware

Communications
Software

PC/Workstation/
Node

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications

Operating System Operating System Operating System Operating System

Interconnection Network/Switch



Grid Computing Architecture 
(Remember the Cluster Architecture)

79

Sequential Applications Parallel Programming Environment

Middleware
(Single System Image and Availability Infrastructure)

Interconnection Network/Switch

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

PC/Workstation/
Cluster/Devices/

Sensors

Network Interface Hardware

Communications
Software

Sequential Applications

Parallel Applications

Sequential Applications
Sequential Applications

Parallel Applications



How Exploit HPC Architectures with Cloud Visibility Models?
HPC as A Service Model

Advanced Networking

Monitoring

Processing Ressources Storage Capacity Acceleration

Virtual Ressources

Deployment Images

Secure Access

Frameworks Data Repositories

Application Repositories AppsContainers

Embeebed Resources Clusters

Science Gateways

Customized Applications

Infrastructure
Oriented Services

Developer
Oriented Services

User/Scientist
Oriented Services

Kadeploy, OpenNebula, KVM

SSH

Web Services, 
Appliances, Viz as a 

Service

Access Apps

* Red Components are (most) concerned at Viz As A Service



5. Good Practice: Know Your Bugs

From
Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging



Tools for debugging
Compilers

• It’s the first program to check your code
• GCC,Intel Compiler,CLang, MS Compiler, ...

Static code analyzers
• Check the program without executing it
• Splint, Cppcheck, Coccinelle, ...

Debuggers
• Inspect/modify a program during its execution
• GDB: the GNU Project Debuggerfor serial and multi-thread programs
• Parallel debuggers (commercial): RogueWave Totalview, Allinea DDT

Dynamics code analyzers and profilers
• Check the program while executing it
• Valgrind, Gcov, Gprof, CLang sanitizers, ...
• Commercial software: Purify, Intel Parallel Inspector, ..



Compilers

What does a compiler do?
• Translate source code to machine code
• 3 phases:

• Lexical analysis: recognize "words" or tokens
• Syntax analysis: build syntax tree according to language grammar
• Semantic analysis: check rules of the language, variable declaration,  

types, etc.
• With this knowledge, a compiler can find many bugs

→  Pay attention to compilerwarningsanderrorsof a program

A compiler can find out if your program makes sense according to the  
language. However, it cannot guess what you are trying to do.



How to use the compiler
• Choose your compiler

GCC CLang Intel Compiler
clang  
clang++

C gcc
C++ g++
Fortran gfortran

icc  
icpc  
ifort

• Activate warning messages with the -Wallparameters

• Warnings can be enabled/disabled individually, cf documentation

• Compile with debug symbols with -gparameters

• Example
• $ gcc -g -Wall program.c -o program  

program.c: In function ’main’:

• program.c:4:15:error: ’y’ undeclared (first use in this function)

• int z = x + y;

• ^
• program.c:4:15: note: each undeclared identifier is reported only once for each  

program.c:4:7:warning: unused variable ’z’ [-Wunused-variable]

• int z = x + y;

• ^

84 /
38



GNU Debugger 1/2
GDB is the GNU Debugger

• Allow to execute a program step by step
• Watch the value of variables
• Stop the execution on given condition
• Show the backtrace of an error
• Modify value of variables at runtime

Starting GDB
• Compile your program with the -g option
• Start program execution with GDB

gdb --args myprogram arg1 arg2

• Or open a core file (generated after a crash)
gdb myprogram corefile

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 85 /
38



GNU Debugger 2/2
Using GDB

• Command line tool
• Many graphical frontends available too:DDD,Qt Creator, ...
• Online documentation & tutorial:

http://sourceware.org/gdb/current/onlinedocs/gdb/ 
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html

Main commands
• help <command>: get help about a command
• run: start execution
• continue: resume execute
• next: execute the next line
• break: set a breakpoint at a given line or function
• bracktrace: show the backtrace
• print: print the value of a variable
• quit: quit GDB

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 86 /
38

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html


Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

87 /38

Logic and syntax bugs

Due to careless programming
• Infinite loop / recursion
• Confusing syntax error,

eg use of = (affectation) instead of == (equality)
• Hard to detect, because everything is correct in your mind

What to do?
• Compile with warnings enabled
• Get some rest and/or an external advice



Integer overflow 1/2

Integer variables have limited size
Size Minimum Maximum

−215 215 − 1
0 216 − 1

−231 231 − 1
0 232 − 1

−263 263 − 1

signed short 16 bits  
unsigned short 16 bits  

signed int 32 bits  
unsigned int 32 bits

signed long long int 64 bits
unsigned long long int 64 bits 0 264 − 1

If the result of an operation cannot fit in the variable,  
most-significant bits are discarded
⇒ we have anIntegerOverflow

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

88 /38



Integer overflow 2/2
Overflow example

unsignedcharA = 200;

unsignedcharB = 60;

//Overflow!  
unsignedcharS = A + B;

0 0 1 1 1 1 0 0

0 0 0 0 0 1 0 0

1 1 0 0 1 0 0 0

= 1

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

89 /38

+

200

+ 60

= 4

→ No error at runtime!

What to do?
• Use the right integer type for your data
• In C/C++/Fortran, overflow needs to be checked manually
• CLang and GCC 5.X offer builtin functions to check for overflow

builtin_add_overflow, builtin_sub_overflow,
builtin_mul_overflow, ...



Floating-Point Number bugs 1/2
Floating-Point Exceptions (FPE)

• Division by zero:
X
0.0 =∞

• Invalid operation:
√

−1.0 = NaN (Not A Number)

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

90 /38• Overflow / Underflow:

e1e30 =∞

Loss of precision

e−1e30 = 0.0

• The order of the operations matters:

(1060 + 1.0) − 1060 =0.0

(1060 −1060)+1.0 = 1.0



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

91 /38

Floating-Point Number bugs 2/2
Floating-Point Exceptions and Errors

• No error at runtime by default
• Errors can propagate through all the computation

What to do?
• Enable errors at runtime in C/C++

#define_GNU_SOURCE  
#include<fenv.h>

intmain()
{
feenableexcept(FE_DIVBYZERO|FE_INVALID| FE_OVERFLOW);
...

• Read "What Every Computer Scientist Should Know About  
Floating-Point Arithmetic" by David Goldberg



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

92 /38

Memory allocation/deallocation
Dynamic memory management in C

• void *p = malloc(size) allocates memory
• free(p) de-allocates the corresponding memory
• In C++, equivalents are new and delete operations

Common mistakes
• Failed memory allocation
• Free non-allocated memory
• Free memory twice (double free error)

These mistakes might not trigger an error immediately  
Later on, they can causecrashesandundefined behavior

What to do?
• Check return code (cf documentation)
• UseValgrindwith --leak-check=full to catch it



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

93 /38

Memory leaks

Memory is allocated but never freed
• Allocated memory keeps growing until it fills the computer memory
• Can causes a crash of the program or of the full computer
• Very common is C program, almost impossible in Fortran, Java

What to do?
• For each malloc(), there should be a corresponding free()

• UseValgrindwith --leak-check=full to catch it



Stack overflow

Program stack
• Each function call create a  

new frame
• Function parameters and local  

variables are allocated in the  
frame

Stack overflow
• Too many function calls  

usually not-ending recursive  
calls

• Oversized local data

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

94 /38



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

95 /38

Buffer overflow

Buffer overflow
• Write data in a buffer with an insufficient size
• Overwrite other data (variable, function return address)
• Can be a major security issue
• Can make the stack trace unreadable

What to do?
• Use functions that check the buffer size:
strcpy() → strncpy(), sprintf() → snprintf(), etc.

• GCC option -fstack-protector checks buffer overflow



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

96 /38

Out of bound access

Read/write outside of the bound of an array
• Mismatch in the bound of an array: [0, N −1] in C, [1, N] in Fortran
• Out of bound reading can cause undefined behavior
• Out of bound writing can cause memory corruption

What to do?
• UseValgrind, it should show error
Invalid read/write of size X



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

97 /38

Input/Output errors

Errors when reading/writing in files
• Usually have an external cause:

• Disk full
• Quota exceeded
• Network interruption

• System call will return an error or hang

What to do?
• Always can check the return code
• Usually stop execution with an explicit message



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

98 /38

Race condition Bugs

"Debugging programs containing race conditions is no fun at all."  
Andrew S. Tanenbaum, Modern Operating Systems

Race condition
• A timing dependent error involving shared state
• It runs fine most of the time, and from time to time,  

something weird and unexplained appears



Different kind of race conditions
• Data race: Concurrent accesses to a shared variable
• Atomicity bugs: Code does not enforce the atomicity for a group of  

memory accesses, eg Time of check to time of use
• Order bugs: Operations are not executed in order  

Compilers and processors can actually re-order instructions

What to do?
• Protect critical sections:Mutexes,Semaphores, etc.
• Use atomic instructions and memory barriers (low level)
• Use compiler builtin for atomic operations2  (higher level)

2https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_
005fatomic-Builtins.html

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

99 /38

https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html


Deadlock 1/3

Deadlock, photograph by David Maitland

"I would love to have seen them go their separate ways, but
I was exhausted. The frog was all the time trying to pull the
snake off, but the snake just wouldn’t let go."

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

100 /
38

What to do?

• Think before writing multithread code
• Use high level programming 

model:Open MP,Intel TBB,MPI, etc.
• Theoretical analysis
• Software for thread safety analysis



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

101 /
38

Performance bugs
Bad Performance can be seen as a bug

• Bad algorithm: too high computation complexity
Example: Insertion Sort is O(N2), Quick Sort is O(N.log(N))

• Memory copies can be a problem,  
specially with Object Oriented languages

• Some memory allocator have issues:
memory alignment constraints, multithread context

What to do?
• Try use existing proven libraries when possible:

eg Eigen library for linear algebra, C++ STL, Boost, etc.
• Use a profiler to see where your program spend most of its time 

Valgrindwith Callgrind,GNU gprof, many commercial tools ...
• ...



4 Good practices to catch bugs

Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

103 /
38

Be a good programmer
Write good code

• Use explicit variable names, don’t re-use variable
• Avoid global variables (problematic in multi-threads)
• Comment and document your code
• Keep your code simple, don’t try to over-optimize

Use defensive programming
• Add assertions, cf assert()

• Always check return codes, cf manpages and documentation

Re-use existing libraries
• Use existing libraries when available/possible
• Probably better optimized and tested than your code

⇒ Code easier to understand and maintain
⇒ Catch bugs as soon as possible



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging 34 /38

Compilers and Tests
Use your compilers

• Enable (all) warnings of the compiler
• Vary the compilers and configurations

• Different compilers (GCC, CLang, Intel Compiler, MS Compiler)
• Various architectures (Windows/Linux, x86/x86_64/ARM)

Testing and Code Checking
• Write unit tests and regression tests
• Use coverage analysis tools
• Use static and dynamic code analysis tools
• Continuous integration:

• Frequent compilation, testing, execution
• Different configurations and platforms

⇒ Catch more warnings and errors
⇒ Better portability



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

105 /
38

Know your tools
Know the error messages

• Look in the documentation / online
• Compiler errors/warnings
• Runtime errors:

Segmentation fault, Floating point exception, Double free, etc.

• Valgrind errors:
Invalid read of size 4
Conditional jump or move depends on uninitialised value(s)
8 bytes in 1 blocks are definitely lost

...

Use the right tool
• Know your tools and when to use them

• GDB: locate a crash
• Valgrind: memory-related issue
• ...



Xavier Besseron Know Your Bugs: Weapons for Efficient Debugging

106 /
38

Debug with methodology

Find a minimal case to reproduce the bug
• Some bugs are intermittent
• Easier to debug
• Help you to understand the cause
• Allow to check that the bug is really fixed
• Bonus: make a regression test

Use a Control Version System (GIT, SVN, ...)
• Keep history, serve as a backup, allow to go back in time
• GIT has a nice feature of code bisection in history to find when a  

bug has been introduced



6. Good Practice: Known the Ecosystem
(Inspired by the Accelerated/Hybrid Computing World)

System (HW/MW/SW) 

Capabilities

Classical ComputingPost Moore  and Non-
Von Newman 
Architectures

Novel Abstractions and 
Models

New Computing

Programming 
Approaches

Libraries

Accuracy and Acceleration

Programming Languages
Directives

Maximum FlexibilityEasily Use

Development
Environment

IDE
Linux, Mac and Windows
Debugging and Profiling

Debuggers, Profiling and 
Performance Visualizers

(Open) Compiler
Tool Chain

Enables compiling new languages to platforms, and languages to 
other architectures

Programming Interpreters

Versions Store
Developer Hubs, Community 

Platforms, Pipeline Environments 

Linkers, Assembly in Open Source 
or Corporate Development

107



6. Good Practice: Known the Ecosystem
(Inspired by the Accelerated/Hybrid Computing World)

• Administration People
• Support People
• Developpers
• Coders
• Users



Important References
• C++ Programming Tutorial and  Instructions for Practical Sessions  by Christopher Lester 

Deptartment of Physics (based on earlier versions by David MacKay, Roberto Cipolla and Tim 
Love) https://www.hep.phy.cam.ac.uk or a google search.

• Bjarne Stroustrup’s site https://www.stroustrup.com/

• The C++ Foundation’s site https://isocpp.org/

• Code Block’s site: http://www.codeblocks.org/

• The cplusplus.comsite: https://www.cplusplus.com/

• The C++ Point Tutorial’s Site https://www.tutorialspoint.com/cplusplus/index.htm

• Learn C++ https://www.learn-cpp.org/

https://www.hep.phy.cam.ac.uk/
https://www.stroustrup.com/
https://isocpp.org/
http://www.codeblocks.org/
https://www.cplusplus.com/
https://www.tutorialspoint.com/cplusplus/index.htm
https://www.learn-cpp.org/


Information Resources:

• An Introduction to the C Programming Language and Software Design  by 
Tim Bailey (Free document)

• C Language Tutorial (Free document) 
• C Programming Learn to Code Sisir Kumar Jena (Non free, however

requested in the campus : https://www.routledge.com/C-Programming-
Learn-to-Code/Jena/p/book/9781032036250 ) 

• TENOUK'S C & C++ RANT (Available in: https://www.tenouk.com/ and 
https://www.tenouk.com/clabworksheet/clabworksheet.html )

https://www.routledge.com/C-Programming-Learn-to-Code/Jena/p/book/9781032036250
https://www.tenouk.com/clabworksheet/clabworksheet.html


Recommended	Lectures

• The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel Applications”, by 
Clay Breshears (Ed. O Reilly, 2009)

• Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s Blog: 
http://www.informit.com/articles/article.aspx?p=1626979 )

• Patterns for Parallel Programming., by T. Mattson., B. Sanders and B. MassinGill (Ed. 
Addison Weslley, 2009) Web Site: http://www.cise.ufl.edu/research/ParallelPatterns/

• Designing and Building Parallel Programs, by Ian Foster in 
http://www.mcs.anl.gov/~itf/dbpp/

• Lectures in the site: www.sc-camp.org

http://www.informit.com/articles/article.aspx?p=1626979
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.mcs.anl.gov/~itf/dbpp/
http://www.sc-camp.org/


Thank you!

@carlosjaimebh


