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● Domain Decomposition and Load-Balancing

● Fine Grain Parallelization with OpenMP

● Faster Broad-Phase with Roofline Analysis

● Verlet Buffer approach for Collision Detection

Going further: DEM+CFD
● Parallel Multi-Physics Simulation of a 
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Computer Simulation is everywhere

● Computational Fluid Dynamics (OpenFOAM)
● Finite Element Analysis (Abaqus)
● Climate / Weather / Ocean Simulation (WRF)
● Molecular Dynamics (Gromacs, Amber)

● Quantum Chemistry (Quantum Espresso)
● Visualization (Paraview)
● Data processing (R, Matlab)
● ...
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What is High Performance Computing?

High Performance Computing (HPC)
● Use of parallel and distributed computers with fast interconnects
● To execute an application quickly and efficiently

Why parallel computers?
● Performance of single CPU core is getting limited (power, physics)
● Multiple cores are used to increase the computing capacity

HPC is challenging
● Active research domain
● Provides tools for many other researchers
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How to get faster with HPC?
Build faster processor 

● Moore’s law continues but The free lunch is over!
● CPU serial-processing speed is reaching 

its physical limit
➔ Multi-cores processor architectures
➔ Accelerators and specialized processors

(GPU, TPU, FPGA, etc.)

Combine multiple computers 
➔ HPC Clusters and Supercomputers

Better use of the hardware
➔ Identify the actual bottleneck 

(CPU, memory, network, etc.)
➔ Vectorization (SIMD)

Not to forget: Better algorithms

H. Sutter. The Free Lunch Is Over. 2005
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How much faster is HPC?
Your simulation is limited by the 
performance of you computer

Your laptop   Uni.lu HPC*    Frontier*    

CPU 4 cores 46,528 cores 602,112 cores

Memory 16 GB 130 TB 9.2 PB

Storage 1 TB 3.48 PB 700 PB

Network Ethernet 10 Gb/s Infiniband 100 Gb/s Slingshot 100 GB/s

Accelerators 1 GPU 96 GPUs 37,632 GPUs

Rpeak 350 Gflops 1,847 Tflops 1,686 Pflops

* shared with 
other users

→ HPC provides the methodology and tools for your application to run faster
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Parallelization Approaches

Introduction to

High-Performance Computing
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How to parallelize an algorithm?

Designing and Building Parallel Programs, 
by Ian Foster, 1995.

Partitioning: decompose computation in small tasks, 
independently of the number of processors

Communication: identify coordination and 
dependencies between tasks

Agglomeration: tasks are combined into larger tasks 
to improve performance or to reduce development 
costs

Mapping: Assign tasks to processors in order to 
maximize processor utilization and minimize 
communication costs
→ load-balancing algorithms
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Problem Partitioning → Domain Decomposition

● The data associated with the 
problem is decomposed

● Each parallel task works on a 
portion of the data

● The same program is used to 
process each piece of data

→ This is called SPMD for Single Program, Multiple Data

CFD Solver

Simulation Domain

CFD Solver

Task 4

CFD Solver

Task 3

CFD Solver

Task 2

CFD Solver

Task 1 BC BC BC

● Communication may be 
needed between tasks
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Problem Partitioning → Functional Decomposition

● Focus on the performed 
computation rather than on the 
data

● Problem decomposed according to 
the work to be done

● Each task then performs a portion 
of the overall work

● Communication may be needed 
between tasks

→ This is called MPMD for Multiple Program, Multiple Data
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Problem Partitioning → Functional Decomposition

● Focus on the performed 
computation rather than on the 
data

● Problem decomposed according to 
the work to be done

● Each task then performs a portion 
of the overall work

● Communication may be needed 
between tasks

→ This is called MPMD for Multiple Program, Multiple Data

Complex applications might use an hybrid approach between 
Domain Decomposition and Functional Decomposition!
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Memory Models and Programming Models

Introduction to

High-Performance Computing
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Thread vs Process
At the level of the Operating System

● Processes and Threads are two ways to exploit parallelism
i.e. execute code on different cores at the same time

● There can be more processes/threads than CPU cores,
but for HPC purpose, we usually use one threads per core

Processes ~ program
● Have their own address space (memory with variables)
● The process address space is not accessible to other 

processes
● Contain at least one thread

Threads ~ execution flow
● Use the address space of the process
● Threads within one process share the same address space
● Lightweight ~ Faster to create and destroy than processes

Address
space

Process with 
one thread

Address
space

Address
space

Process with 
two threads

Cannot access 
the memory of 
other processes

With a process, 
threads share the 
same memory
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Shared Memory
Single Computing Node 

Computer Node

Memory

CPU
core

CPU
core

vs

That’s your 
laptop or 

workstation!

Computer Node

Memory

CPU
core

CPU
core

Computer Node

Memory

CPU
core

CPU
core

Network

Distributed Memory
Multiple Computing Nodes 

That’s an 
HPC cluster!

Memory Models for Parallel Programming
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That’s an 
HPC cluster!

Memory Models for Parallel Programming

To use multiple CPUs on the same computing node
● Distribute the computation
● All threads share the same memory space
● Require synchronizations instead of communications

 ⇒ OpenMP: Open Multi-Processing

To use multiples CPUs on multiple computing nodes
● Distribute the computation and the data
● Processes cannot access the memory of others
● Exchange messages on the network 

 ⇒ MPI: Message Passing Interface
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Only Distributed Memory
All cores on Multiple Computing Nodes
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Memory Models for Parallel Programming

The processes cannot access the memory of others
● Use communication even within a node
● Communication within a node can be optimized by the 

software layer (e.g. memory copy instead to bypass 
the network)

● Simplify the programming  ⇒ MPI

Use shared memory within a computing node
and distributed memory across nodes
● To be adapted to the hardware
● Benefit of both models, but more complex

 ⇒ Hybrid MPI + OpenMP

Computer Node

Memory

CPU
core

CPU
core

Computer Node

Memory

CPU
core

CPU
core

Network

One process per node with one thread 
per core and communication
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Distributed Memory Programming with MPI
Message Passing Model: Multiple processes run in parallel and exchange messages
→ Analogy: Paper mails if your network is slow, E-mails if your network is fast

● MPI is a standard: MPI-1.0 in 1994, MPI-2.0 in 1997, MPI-3.0 in 2012, MPI-4.0 in 2021 

● Different implementations: OpenMPI, MPICH, MVAPICH, Intel MPI, etc.

● Standard API in C and Fortran, non-official API in C++, Python

Computation

Receive M1

Computation

Send M2

Computation

M1      

M2     

Process 0 Process 1

E
xecution

Computation

Receive M2

Computation

Send M1

Computation
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MPI Concepts

Fixed number of processes
● Specified at application startup, unchanged throughout execution

Communicator
● Abstraction for a group of processes that can communicate
● A process can belong to multiple communicators
● Default and global communicator: MPI_COMM_WORLD

Process Rank
● Index of a process within a communicator
● Used to identify other processes in communication operations
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MPI Programming Interface

Lifecycle management
● MPI_Init, MPI_Finalize, 

MPI_Abort

Communicators
● MPI_Comm_Size, MPI_Comm_Rank
● MPI_Comm_create, MPI_Comm_dup, 

MPI_Comm_join

Datatype and Buffer
● MPI_Type_*
● MPI_Pack, MPI_Unpack

Blocking point-to-point
● MPI_Send, MPI_Recv

Non-blocking communications
● MPI_Isend, MPI_Irecv
● MPI_Wait, MPI_Waitall

Collective communications
● MPI_Bcast, MPI_Reduce, 

MPI_Gather, MPI_Scatter
● MPI_Barrier

One-sided communications
● MPI_Win_create, MPI_wait
● MPI_Put, MPI_Get
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Shared Memory Multi-Processing with OpenMP
● OpenMP is based on the Fork-Join model

→ Analogy: Restaurant kitchen, the cooks share the utensils and ingredients to prepare the dishes

Wikipedia user A1, Fork join, CC BY 3.0

Threads are spawned 
dynamically in each 
parallel region

● Portable standard API for C, C++ and Fortran 
● Support multi-cores and accelerators
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OpenMP Concepts 

Based on compiler directives #pragma omp ...
Example

#pragma omp parallel for
for (int i = 0; i < 100000; i++) {
    a[i] = 2 * i;
}

● Can control work distribution with the schedule clause (static, dynamic, guided)

● Threads can share variables, cf private or shared clauses
→ Caution with concurrent accesses!

In principle → Simple to use, minor modifications to the code 

In practice → Might require changes in loops and data structures
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Parallel Programming Caveats

Introduction to

High-Performance Computing
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Race Condition 1/3

"Debugging programs containing race conditions is no fun at all." 
Andrew S. Tanenbaum, Modern Operating Systems, 1992.

Race condition
● A timing-dependent error involving shared state

● It runs fine most of the time, and from time to time, 
something weird and unexplained appears
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Race Condition 2/3
Code example

void deposit(Account* account, double amount)
{
  account->balance += amount;
}
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Race Condition 2/3
Code example

void deposit(Account* account, double amount)
{
  READ balance
  ADD amount
  WRITE balance
}
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Race Condition 2/3
Code example

void deposit(Account* account, double amount)
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  READ balance
  ADD amount
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}

Concurrent execution
Thread 1 calls deposit(A,10) Thread 2 calls deposit(A,1000)
READ balance (0)

READ balance (0)
ADD 1000
WRITE balance (1000)

ADD 10
WRITE balance (10)
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Race Condition 2/3
Code example

void deposit(Account* account, double amount)
{
  READ balance
  ADD amount
  WRITE balance
}

Concurrent execution
Thread 1 calls deposit(A,10) Thread 2 calls deposit(A,1000)
READ balance (0)

READ balance (0)
ADD 1000
WRITE balance (1000)

ADD 10
WRITE balance (10)

READ balance (0)
READ balance (0)
ADD 1000
WRITE balance (1000)

ADD 10
WRITE balance (10)

→ Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!
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Race Condition 3/3
Different kind of race conditions

● Data race: Concurrent accesses to a shared variable

● Atomicity bugs: Code does not enforce the atomicity for a group of memory 
accesses, e.g. Time of check to time of use

● Order bugs: Operations are not executed in order
Compilers and processors can actually re-order instructions

What to do?
● Protect critical sections: Mutexes, Semaphores, etc.

● Use atomic instructions and memory barriers (low level)

● Use compiler builtin for atomic operations (higher level)
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Deadlock 1/3

Deadlock, photograph by David Maitland

"I would love to have seen them go their separate ways, but I was
exhausted. The frog was all the time trying to pull the snake off, but the
snake just wouldn’t let go."
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Deadlock 2/3

Code Example

void deposit(Account* account,
             double amount)
{
  lock(account->mutex);
  account->balance += amount;
  unlock(account->mutex);
}

void transfer(Account* accA,
              Account* accB,
              double amount)
{
  lock(accA->mutex);
  lock(accB->mutex);
  accA->balance += amount;
  accB->balance -= amount;
  unlock(accA->mutex);
  unlock(accB->mutex);
}

→ Use mutexes (lock/unlock) to protect concurrent accesses?
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Deadlock 3/3
Concurrent Execution

Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
                // B is unlocked

lock(A->mutex); // wait until
                // A is unlocked

... ...
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Thread 1 calls transfer(A,B,10) Thread 2 calls transfer(B,A,20)

lock(A->mutex);
lock(B->mutex);

lock(B->mutex); // wait until
                // B is unlocked

lock(A->mutex); // wait until
                // A is unlocked

... ...

What to do?
• Think before writing multithread code
• Use high level programming model: OpenMP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis
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Performance Modeling and Analysis

Introduction to

High-Performance Computing
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Performance Modeling of a CPU → Roofline Model

● Estimate the performance of an algorithm on a given CPU
○ Also applies to GPUs, TPUs, etc.

● Throughput oriented model

● Identify the bottleneck

● Allow to improve the implementation of an algorithm

Model of 
the CPU

Model of 
the algorithm

Model of the 
performance
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Roofline model
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Roofline model

Peak performance limited by

● Compute operations: Gflop/s
● Data bandwidth: GB/s

CPU

(compute, flop/s)

FPU FPU
Memory

(data, GB)
Bandwidth

(GB/s)

Model of a CPU
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Peak performance limited by

● Compute operations: Gflop/s
● Data bandwidth: GB/s

Algorithm characteristics

● Operations: Gflop
● Data: GB

CPU

(compute, flop/s)

FPU FPU
Memory

(data, GB)
Bandwidth

(GB/s)

A
(data, GB)

B
(data, GB)

C
(data, GB)

Operations
(flop)

Model of a CPUModel of an algorithm

Arithmetic Intensity
AI:    flop / Byte
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● Compute operations: Gflop/s
● Data bandwidth: GB/s
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Advanced Roofline Plot
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Comments about the Roofline Model

In theory
● Gives good insight of the bottleneck of a given algorithm

In practice, use automatic tools
● CPU model can be hard to find
● Algorithm characterization is hard for complex algorithms

Warning
● The Roofline Model tells if an algorithm performs well, 
● not if the algorithm is the best for your problem
● e.g. Bubble sort O(n2) vs Quicksort O(n log n)
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Roofline Model in practice
Example with Intel Advisor
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Measuring Parallel Performance: Speedup and Scalability

Strong Scalability: 
Problem size is fixed, increase the number of processors
→ Constant amount of work in the study

Weak Scalability: 
Increase the problem size and the nb of processors with the same ratio
 → Constant amount of work per processor

Efficiency = Speedup
N

Speedup =
T1

TN

● Number of processors → N
● Sequential Time → T1

● Parallel Time → TN

35 / 79



X. Besseron              HPC for the simulation of particles with DEM SC-Camp 2023

Measuring Parallel Performance: Speedup and Scalability

Strong Scalability: 
Problem size is fixed, increase the number of processors
→ Constant amount of work in the study

Weak Scalability: 
Increase the problem size and the nb of processors with the same ratio
 → Constant amount of work per processor

Efficiency = Speedup
N

Speedup =
T1

TN

● Number of processors → N
● Sequential Time → T1

● Parallel Time → TN

Strong scalability

60%
efficiency

35 / 79



X. Besseron              HPC for the simulation of particles with DEM SC-Camp 2023

Measuring Parallel Performance: Speedup and Scalability

Strong Scalability: 
Problem size is fixed, increase the number of processors
→ Constant amount of work in the study

Weak Scalability: 
Increase the problem size and the nb of processors with the same ratio
 → Constant amount of work per processor

Efficiency = Speedup
N

Speedup =
T1

TN

● Number of processors → N
● Sequential Time → T1

● Parallel Time → TN

Weak scalability

Parallelization 
overhead
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Limit to Scalability: Amdahl’s law

Amdahl’s law is a performance model

Speedup =
T1

TN
= 1

1− p + p
N

⩽ 1
1 −p

Execution

● Parallel fraction ■ → p
● Serial fraction ■ → 1 – p
● Number of processors → N

According to Amdahl’s law, scalability is bounded

Another performance model → Gustafson’s law
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Limit to Scalability: Load-balancing 

Load-balancing
→ Distribution of work between processors

Load unbalance
● Lost computation time
● Accumulates over iterations
→ Limits the scalability

● Coarse grain is more difficult to balance 
than fine grain

● Larger scale requires fine grain

→ A good estimation of the work of each task is critical
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Discrete Element Method and XDEM

High-Performance Computing

for the Simulation of Particles
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What is XDEM?
eXtended
  Discrete 
  Element 
  MethodSimulation software for

Particles Dynamics
● Force and torques
● Particle motion

Particles Conversion
● Heat and mass transfer
● Chemical reactions

Coupled with
● Computational Fluid Dynamics (CFD)
● Finite Element Method (FEM)

https://luxdem.uni.lu/software/
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eXtended
  Discrete 
  Element 
  MethodSimulation software for

Particles Dynamics
● Force and torques
● Particle motion

Particles Conversion
● Heat and mass transfer
● Chemical reactions

Coupled with
● Computational Fluid Dynamics (CFD)
● Finite Element Method (FEM)

OpenFOAM

ANSYS Fluent

diffPack

CalculiX
deal.II

https://luxdem.uni.lu/software/
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Application Examples: XDEM

Hopper charge and dischargeBrittle Failure
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Application Examples: XDEM coupled with CFD

Iron & Slag production
in a Blast Furnace

Selective Laser Melting
in Additive Manufacturing

Wood Conversion 
in a Biomass Furnace
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Overview of XDEM Execution Flow 
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Main Computations Phases in XDEM
Broad Phase: Fast but approximate scan to identify the 
pairs of particles that could interact

➔ uses an approximate shape (bounding volume)

Narrow Phase: Precise collision detection on the 
particle pairs identified in the broad-phase

➔ uses the actual shape (sphere, cube, cylinder, etc.)
➔ calculates the distance/overlap between particles

Apply Models: Apply the physics models to each pair of 
interacting particles

➔ accumulate contributions to each particle: 
Contact → force, torque, ... 
Conduction/Radiation → heat flux, ... 

Integration: Update the particle states by integrating the 
contributions from all the interacting partners
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Domain Decomposition with MPI
and Load-Balancing

High-Performance Computing

for the Simulation of Particles
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Domain Decomposition in XDEM
Decomposing the set of particles?
● Particles move during the simulation
● Neighborhood relations change
● Create undetected dependencies

→ Would require frequent re-partitioning
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Domain Decomposition in XDEM
Decomposing the set of particles?
● Particles move during the simulation
● Neighborhood relations change
● Create undetected dependencies

→ Would require frequent re-partitioning

Use a static regular grid to ‘store’ particles
● Find location of a particle in constant time
● Size of grid cells adapted for collision detection
● No missing communication

→ Re-partitioning only required in case of imbalance
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Partitioning and Load-Balancing for XDEM

Particles in the cell grid From grid to graph
● Node ← Cell
● Node weight ← f(nb particles) 

                      ~ Computation cost
● Edge ← Neighborhood relation
● Edge weight ← g(nb particles) 

                      ~ Communication cost
● Node Coordinates (topologic approaches)

Partitioning algorithm
● Orthogonal Recursive Bisection
● METIS
● SCOTCH
● Zoltan PHG, RCB, RIB, ...
● etc.

Objectives
● Balance the computation cost
● Minimize the communication cuts

Processor 0

Processor 1

Processor 2

Processor 3
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Example of Load-Balancing

Zoltan RCB
(Recursive Coordinate Bisection)

ORB
(Orthogonal Recursive Bisection)

SCOTCH K-wayZoltan RIB
(Recursive Inertial Bisection)
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Weight estimation for load-balancing

How to estimate the computing cost ?
● Difficult to measure at the level of a single cell
● Multiple phases and different complexities

● Nb of interactions is difficult to estimate

→ Work in progress
n = nb of particles 

in a cell

Computation Phase Complexity

Broad-phase O( (nb particles)2 )

Narrow-phase O( nb interactions )

Apply Models O( nb interactions )

Integration O( nb particles )
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Fine grain parallelization with OpenMP

High-Performance Computing

for the Simulation of Particles
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Hybrid Parallelization MPI+OpenMP of XDEM

Decomposed
Particle Domain
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Particle Domain

Computing
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Hybrid Parallelization MPI+OpenMP of XDEM

Sub-domains distributed on 
computing nodes with MPI
→ Coarse grain //
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Hybrid Parallelization MPI+OpenMP of XDEM

Sub-domains distributed on 
computing nodes with MPI
→ Coarse grain //

Intra-subdomain parallelization 
with OpenMP
→ Fine grain //
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XDEM parallelization with OpenMP

Parallelization at a fine grain:
➔ Particles, Pairs of particles and Interactions

Guided by the type of accesses:
➔ Iterate on the objects being modified to avoid concurrent 

accesses (when possible)
➔ Use containers with random access iterators

Read Access Write Access Iteration on

Broad Phase Particles Interactions Particle pairs
Narrow Phase Interactions Interactions Interactions
Apply Models Interactions Particles Interactions

Integration Particles Particles Particles

Potential concurrent accesses!
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Concurrency write

How to fill Interactions vector concurrently?

→ Unkown number of interactions

Solution

● Each thread fills a private deque
● Perform a partial sum of sizes

● Copy in shared vector at the position

defined by the partial sum

● Synchronization barrier at the end

→ No critical or atomic regions

Size 1 Size 2 Size n-1 Size n

size1 size1+size2 Partial sum size(1)+..+size(n-1) size(1)+..+size(n)
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Memory allocator

XDEM C++ code is highly dynamic
➔ Intensive calls to the memory allocator

Default glibc memory allocator 
● uses locks internally
➔ Limits the scalability of threaded executions 

Optimized memory allocators
● Jemalloc based on independent arenas
● TCMalloc based thread cache

→ 3-4 times faster on 28 cores
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Faster Broad-Phase with Roofline Analysis

High-Performance Computing

for the Simulation of Particles
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Bounding Volumes in XDEM Broad-phase

Real-Time Collision Detection, by Christer Ericson, 2005.

Which bounding volume for the broad-phase?
● Bounding Sphere (BS)?

● Axis Aligned Bounding Box (AABB)?
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Roofline Analysis 
for Bounding Volumes

● Broad-phase is memory-bounded

Intersection of 2 bounding volume?

● Bounding Spheres release the pressure on memory bandwidth
● Using float type instead double also reduces memory accesses

 ⇒ Use Bounding Spheres of floats

Memory Complexity of ∩ AI
Bounding 
Sphere

2 x 4 reals
(position + radius)

11 arithmetic ops
1 comparison 1.38 flop/real

Axis Aligned 
Bounding Box

2 x 6 reals
(upper + lower corners)

6 comparisons
5 logical AND 0.5 flop/real
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Verlet Buffer approach for Collision Detection

High-Performance Computing

for the Simulation of Particles
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Verlet Buffer for Collision Detection in XDEM 1/3

Idea → Inspired from Computer “Experiments” on Classical Fluids. I. Thermodynamical 
Properties of Lennard-Jones Modecules by L. Verlet, 1967.

● Extend the range of collision detection in the Broad Phase
● Potential collision partners are valid for many iterations

Extend Bounding Spheres with

Skin = K . Vparticle . dt
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Verlet Buffer for Collision Detection in XDEM 2/3

Next Timesteps
If all particles are still within their extended bounding spheres

➔ Skip the Broad Phase
➔ Proceed with the Narrow Phase using previously-calculated 

list of interaction pairs

If one particle exits its bounding spheres
➔ Re-calculate the Broad Phase with new extended bounding spheres

● Narrow Phase is always executed
● Identical results are guaranteed
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Verlet Buffer for Collision Detection in XDEM 3/3
Increasing K

➔ Increasing cost of Narrow Phase
➔ Increasing cost of each Broad Phase
➔ But less executions of Broad Phase
➔ Less time spent in Broad Phase overall

K = 200 is a good default value
➔ Simulation time reduced by 18% to 81%  

Regression model for K trained on examples
➔ Best K value between 150 and 600
➔ Additional improvement between 0% to 26%
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Discrete Element Method (DEM)
 + 

Computational Fluid Dynamics (CFD)

Parallel Multi-Physics Simulation 
of a Biomass Furnace

Going further:
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Biomass Combustion
Biomass combustion (e.g. wood chips)

● widely used for generating electric and thermal energy
● renewable and potentially carbon-neutral energy source

Combustion process 
● very complex 
● requires advanced techniques to minimize harmful gas 

emissions

Alternative biomass 
● wood waste, straw, bark, olive pits, nut shells, grain husks, 

bagasse, etc.
● can cause problems due to their chemical composition, ash 

melting temperature, humidity, ash content, calorific value and 
others.
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Combustion process in a biomass furnace

Combustion chamber of a biomass furnace 
● forward acting grate 
● transports the fuel through the furnace

The fuel undergoes a number of steps 
● drying, pyrolysis, char burning, cooling in which it 

releases hydrocarbons
● hydrocarbons are burned in the gas phase 

Use numerical simulations 
● to study efficiency and performance
● and reduce the costs of experiments

[Paces and Kozek, 2011]
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Numerical Approach for Biomass Furnace: 
Multi-Physics Simulation 

Two-way volume coupling between 
Discrete Element Method (DEM) and 
Computational Fluid Dynamics (CFD)

XDEM (Lagrangian) for:
● Motion and collisions of biomass particles
● Thermodynamic Conversion of biomass particles

OpenFOAM (Eulerian) for:
● Flow of gas phase
● Reactions in the gas phase

CFD-DEM coupling is required to capture the physics of 
biomass furnaces and offers unprecedented insight.

Particles

Fluid

Interactions

D
EM

 →
 C

FD

C
FD

 →
 D

EM
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Challenges in CFD-XDEM parallel coupling

● Combine different independent software
● Volume coupling  Large amount of data to exchange⇒
● Different distributions of the computation and of the data
● DEM data distribution is dynamic
● Data interpolation between meshes

Classical Approaches

● Each software partitions its domain independently
● Data exchange in a peer-to-peer model

SediFoam [Sun2016]

CFD-DEM Parallel Coupling: Challenges
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CFD-DEM Parallel Coupling: Challenges
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CFD-DEM Parallel Coupling: Challenges
Classical Approach: the domains are partitioned independently
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CFD-DEM Parallel Coupling: Challenges
Classical Approach: the domains are partitioned independently

Complex pattern and large volume of communication
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Domain elements co-
located in domain space 
are assigned to the 
same partition

Co-located Partitioning Strategy
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Co-located Partitioning Strategy: communication
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With native implementation of each sotfware

Co-located Partitioning Strategy: communication
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Use direct intra-proces memory access
if the two software are linked into one executable,

Co-located Partitioning Strategy: communication
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Can be non-existing
if partitions are perfectly aligned

Co-located Partitioning Strategy: communication
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Volume Coupling for Biomass Furnace Simulation
Momentum, Heat and Mass transfer 

Fluid phase in OpenFOAM Particles in XDEM

● Porosity
● Momentum source 

(acceleration, omega)
● Heat source
● Mass sources (CH4, CO2, 

CO, H2, H2O, N2, O2, Tar)

● Fluid velocity, density, dynamic viscosity
● Pressure gradient
● Temperature
● Thermal conductivity
● Specific heat
● Diffusivity
● Species mass fraction (CH4, CO2, CO, 

H2, H2O, N2, O2, Tar)

CFD to DEM

DEM to CFD
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Parallelization approach for Biomass Furnace Simulation
OpenFOAM parallelized with MPI XDEM parallelized with OpenMP

Overlapping domains are co-located  ⇒ No inter-partition inter-physics communication
Solvers linked as one executable        Fast intra-partition inter-physics data exchange⇒

Co-located partitioning → Account for the spatial-locality of the data between the two solvers
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Biomass Furnace Setup
based on an experimental furnace at Enerstena UAB in Lithuania

Furnace
● Dimensions of 2.51m × 1.14m × 2.07m (L × W × H )
● Top exhaust pipe of 0.6m diameter
● 6 primary air inlets from the bottom
● 11 secondary air inlets on each side
● 1 tertiary air inlet on the exhaust pipe

Grates
● 8 static grates and 
● 6 moving grates with an 
● average slope of 7.5 degrees

Fuel bed
● Initial fuel bed height is 10cm 
● Wood particles of 3cm diameter with 40% humidity
● Injected at the top side of the grates at a rate of 439kg/h

● CFD mesh with 60,001 cells
● 9,141 particles initially

Following performance measurements were carried out on the Barbora cluster of the IT4Innovations HPC platform.
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Biomass Furnace simulation using XDEM+OpenFOAM
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Simulation progress

● At 445s of simulated time, lighting-up of the furnace
● Around 1125s, furnace reaches the steady state (all hot gases are burning)

 ⇒ Workload between CFD and DEM changes with the simulation progress
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Tools to work with the Roofline Model
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Intel Advisor, Intel 
https://software.intel.com/en-us/advisor

Roofline: An Insightful Visual Performance Model for Multicore Architectures
Williams et al., CACM, 2009. DOI: 10.1145/1498765.1498785
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References on the Roofline Model
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https://github.com/RRZE-HPC/likwid
https://software.intel.com/en-us/advisor
https://doi.org/10.1145/1498765.1498785
https://crd.lbl.gov/assets/Uploads/SC18-Roofline-1-intro.pdf
https://doi.org/10.1109/ISPASS.2014.6844463
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References on HPC for XDEM

Parallel Multi-Physics Simulation of Biomass Furnace and Cloud-based Workflow for SMEs  
Besseron et al. PEARC’22, 2022. DOI: 10.1145/3491418.3530294

Large Scale Parallel Simulation For Extended Discrete Element Method
Mainassara Chekaraou A. W., PhD Thesis, 2020. http://hdl.handle.net/10993/46418

Predicting near-optimal skin distance in Verlet buffer approach for Discrete Element Method
Mainassara Chekaraou et al., PDCO’20, 2020. DOI: 10.1109/IPDPSW50202.2020.00093

A parallel dual-grid multiscale approach to CFD-DEM couplings
Pozzetti et al., Journal of Computational Physics, 2019. DOI: 10.1016/j.jcp.2018.11.030

The XDEM Multi-physics and Multi-scale Simulation Technology: Review on DEM-CFD Coupling, Methodology and 
Engineering Applications, Peters et al., Particuology, 2019. DOI: 10.1016/j.partic.2018.04.005

Hybrid MPI+OpenMP Implementation of eXtended Discrete Element Method
Mainassara Chekaraou et al., WAMCA’18. DOI: 10.1109/CAHPC.2018.8645880

Unified Design for Parallel Execution of Coupled Simulations using the Discrete Particle Method
Besseron et al., PARENG’13, 2013. DOI:10.4203/ccp.101.49

78 / 79

http://dx.doi.org/10.1145/3491418.3530294
http://hdl.handle.net/10993/46418
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