
An (almost) Easy
INTRODUCTION TO
OPENACC®

Acknowledgements

• Sunita Chandrasekaran, University of Delaware
• Guido Juckeland, Helmholtz-Zentrum Dresden-Rossendorf

(HZDR)
• Fernanda Foertter, Oak Ridge National Laboratory
• Joe Bongo, NVIDIA Deep Learning Institute

GPU Computing is Powerful…

… but it’s not simple.

(REMEMBER) INTRODUCTION TO PARALLEL
PROGRAMMING

Remember: WHAT IS PARALLEL
PROGRAMMING?

▪ “Performance Programming”

▪ Parallel programming involves exposing an
algorithm’s ability to execute in parallel

▪ This may involve breaking a large operation
into smaller tasks (task parallelism)

▪ Or doing the same operation on multiple
data elements (data parallelism)

▪ Parallel execution enables better
performance on modern hardware

A + B + C + D

Sequential Parallel

A B C D A B C D

3 Steps

2 Steps

A REAL WORLD CASE STUDY
Modern cancer research

▪ The Russian Academy of Science created a program to
simulate light propagation through human tissue

▪ This program was used to be able to more accurately
detect cancerous cells by simulating billions of random
paths that the light could take through human tissue

▪ With parallel programming, they were able to run
thousands of these paths simultaneously

▪ The sequential program took 2.5 hours to run

▪ The parallel version took less than 2 minutes

Parallel Computing Illuminating a Path to Early Cancer Detection

https://blogs.nvidia.com/blog/2011/02/11/parallel-computing-illuminating-a-path-to-early-cancer-detection/

WHAT IS PARALLEL PROGRAMMING?
A real world example

▪ A professor and his 3 teaching assistants (TA) are grading
1,000 student exams

▪ This exam has 8 questions on it

▪ Let’s assume it takes 1 minute to grade 1 question on 1
exam

▪ To maintain fairness, if someone grades a question (for
example, question #1) then they must grade that question
on all other exams

▪ The following is a sequential version of exam grading

Prof
T
A

x1000
8 questions per exam

1 minute per question

8,000 questions in total

SEQUENTIAL SOLUTION

Grade Exams 1-1000 : Questions #1, 2, 3, 4, 5, 6, 7, 8 : 8000m

8000 m

SEQUENTIAL SOLUTION

Exams 1-1000

: Q #1 : 1000m

Exams 1-1000

: Q #2 : 1000m

Exams 1-1000

: Q #3 : 1000m

Exams 1-1000

: Q #4 : 1000m

Exams 1-1000

: Q #5 : 1000m

Exams 1-1000

: Q #6 : 1000m

Exams 1-1000

: Q #7 : 1000m

Exams 1-1000

: Q #8 : 1000m

8000+ m

SEQUENTIAL SOLUTION

Exams 1-1000 : Q #1, 2 :

2000m

Exams 1-1000 : Q #3, 4 :

2000m

Exams 1-1000 : Q #5, 6 :

2000m

Exams 1-1000 : Q #7, 8 :

2000m

8000+ m

PARALLEL SOLUTION

Exams 1-250 : Q #1, 2 :

500m

Exams 1-250 : Q #3, 4 :

500m

Exams 1-250 : Q #5, 6 :

500m

Exams 1-250 : Q #7, 8 :

500m

2000+ m

Exams 251-500 : Q #3, 4 :

500m

Exams 251-500 : Q #5, 6 :

500m

Exams 251-500 : Q #7, 8 :

500m

Exams 251-500 : Q #1, 2 :

500m

Exams 501-750 : Q #5, 6 :

500m

Exams 501-750 : Q #7, 8 :

500m

Exams 501-750 : Q #1, 2 :

500m
Exams 751-1000 : Q #1, 2 :

500m

Exams 751-1000 : Q #3, 4 :

500m

Exams 751-1000 : Q #7, 8 :

500m

Exams 751-1000 : Q #5, 6 :

500m

Exams 501-750 : Q #3, 4 :

500m

PIPELINE

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #1, 2

2m

2006+ m

PIPELINE STALL

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #7, 8

2m

Q #5, 6

2m

Q #1, 2

2m

Q #3, 4

2m

Q #1, 2

2m

2006+ m

GRADING EXAMPLE SUMMARY

It’s critical to understand the problem before trying to parallelize it

▪ Can the work be done in an arbitrary order, or must it be done in sequential order?

▪ Does each task take the same amount of time to complete? If not, it may be
necessary to “load balance.”

In our example, the only restriction is that a single question be graded by a single
grader, so we could divide the work easily, but had to communicate periodically.

▪ This case study is an example of task-based parallelism. Each grader is assigned a
task like “Grade questions 1 & 2 on the first 500 tests”

▪ If instead each question could be graded by different graders, then we could have
data parallelism: all graders work on Q1 of the following tests, then Q2, etc.

(Remember) AMDAHL’S LAW

AMDAHL’S LAW

▪ Amdahl’s law is an observation that how much
speed-up you get from parallelizing the code is
limited by the remaining serial part.

▪ Any remaining serial code will reduce the
possible speed-up

▪ This is why it’s important to focus on
parallelizing the most time consuming parts,
not just the easiest.

Serialization Limits Performance

APPLYING AMDAHL’S LAW

▪ What’s the maximum speed-up that can be
obtained by parallelizing 50% of the code?

(1 / 100% - 50%) = (1 / 1.0 - 0.50) = 2.0X

▪ What’s the maximum speed-up that can be
obtained by parallelizing 25% of the code?

(1 / 100% - 25%) = (1 / 1.0 - 0.25) = 1.3X

▪ What’s the maximum speed-up that can be
obtained by parallelizing 90% of the code?

(1 / 100% - 90%) = (1 / 1.0 - 0.90) = 10.0X

Estimating Potential Speed-up

Total Serial Runtime

Total Parallel
Runtime (50%)

Total Parallel
Runtime (25%)

Total Parallel
Runtime (90%)

(NOW) AN INTRODUCTION TO OPENACC

19

OpenACC
Simple | Powerful | Portable

Fueling the Next Wave of

Scientific Discoveries in HPC

University of Illinois
PowerGrid- MRI Reconstruction

70x Speed-Up

2 Days of Effort

http://www.cray.com/sites/default/files/resources/OpenACC_213462.12_OpenACC_Cosmo_CS_FNL.pdf

http://www.hpcwire.com/off-the-wire/first-round-of-2015-hackathons-gets-underway

http://on-demand.gputechconf.com/gtc/2015/presentation/S5297-Hisashi-Yashiro.pdf

http://www.openacc.org/content/experiences-porting-molecular-dynamics-code-gpus-cray-xk7

RIKEN Japan
NICAM- Climate Modeling

7-8x Speed-Up

5% of Code Modified

main()
{

<serial code>
#pragma acc kernels
//automatically runs on GPU

{
<parallel code>

}
}

8000+

Developers

using OpenACC

http://www.cray.com/sites/default/files/resources/OpenACC_213462.12_OpenACC_Cosmo_CS_FNL.pdf
http://www.hpcwire.com/off-the-wire/first-round-of-2015-hackathons-gets-underway/
http://on-demand.gputechconf.com/gtc/2015/presentation/S5297-Hisashi-Yashiro.pdf
http://www.openacc.org/content/experiences-porting-molecular-dynamics-code-gpus-cray-xk7

20

0,0x

2,0x

4,0x

6,0x

8,0x

10,0x

12,0x

Alanine-1
13 Atoms

Alanine-2
23 Atoms

Alanine-3
33 AtomsJanus Juul Eriksen, PhD Fellow

qLEAP Center for Theoretical Chemistry, Aarhus University

“

OpenACC makes GPU computing approachable for

domain scientists. Initial OpenACC implementation

required only minor effort, and more importantly,

no modifications of our existing CPU implementation.

“

LS-DALTON

Large-scale application for calculating high-
accuracy molecular energies

Lines of Code

Modified

of Weeks

Required

of Codes to

Maintain

<100 Lines 1 Week 1 Source

Big Performance

Minimal Effort

LS-DALTON CCSD(T) Module
Benchmarked on Titan Supercomputer (AMD CPU vs Tesla K20X)

21

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{
...
#pragma acc parallel
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
...

}
}
...

}

CPU, GPU, MIC

Performance portable

Interoperable

Single source

Incremental

▪ OpenACC is designed to be portable to many
existing and future parallel platforms

▪ The programmer need not think about specific
hardware details, but rather express the
parallelism in generic terms

▪ An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having
separate memories.

Host

Device

Host

Memory
Device

Memory

OPENACC PORTABILITY
Describing a generic parallel machine

Single Source Low Learning CurveIncremental

OPENACC
Three major strengths

Incremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)

{

< loop code >

}

for(i = 0; i < N; i++)

{

< loop code >

}

Enhance Sequential Code

#pragma acc parallel loop

for(i = 0; i < N; i++)

{

< loop code >

}

#pragma acc parallel loop

for(i = 0; i < N; i++)

{

< loop code >

}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,

remove/alter OpenACC
code as needed.

Single Source Low Learning CurveIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

Single Source

OPENACC

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i <
N; i++)

< loop
code >

}

int main(){

...

#pragma acc
parallel loop

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Single Source Low Learning CurveIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

OPENACC

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

int main(){

<sequential
code>

#pragma acc
kernels

{

<parallel
code>

}

}

Compiler
Hint

Compiler
Hint

CPU
Parallel Hardware

The programmer will
give hints to the

compiler about which
parts of the code to

parallelize.

The compiler will then
generate parallelism
for the target parallel

hardware.

Single SourceIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE

Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community%23slack

31

OpenACC Programming Cycle

32

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

33

Example: Jacobi Iteration
Iteratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

34

Jacobi Iteration: C Code

34

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until convergedIterate until converged

Iterate across matrix

elements

Iterate across matrix

elements

Calculate new value from

neighbors

Calculate new value from

neighbors

Compute max error for

convergence

Compute max error for

convergence

Swap input/output arraysSwap input/output arrays

35

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

36

Identify Parallelism

36

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Independent loop

iterations

Independent loop

iterations

Independent loop

iterations

Independent loop

iterations

Data dependency

between iterations.

Data dependency

between iterations.

37

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

38

OpenACC kernels Directive

38

The kernels directive identifies a region that may contain loops that the
compiler can turn into parallel kernels.

#pragma acc kernels

{

for(int i=0; i<N; i++)

{

x[i] = 1.0;

y[i] = 2.0;

}

for(int i=0; i<N; i++)

{

y[i] = a*x[i] + y[i];

}

}

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

The compiler identifies

2 parallel loops and

generates 2 kernels.

39

Parallelize with OpenACC kernels

39

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc kernels

{

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

Look for parallelism

within this region.

Look for parallelism

within this region.

40

Building the code

40

$ pgcc -fast -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits

55, Generating copyout(Anew[1:4094][1:4094])

Generating copyin(A[:][:])

Generating copyout(A[1:4094][1:4094])

Generating Tesla code

57, Loop is parallelizable

59, Loop is parallelizable

Accelerator kernel generated

57, #pragma acc loop gang /* blockIdx.y */

59, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

63, Max reduction generated for error

67, Loop is parallelizable

69, Loop is parallelizable

Accelerator kernel generated

67, #pragma acc loop gang /* blockIdx.y */

69, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

41

1,00X

1,66X

2,77X

2,91X

3,29X

0,90X

0,00X

0,50X

1,00X

1,50X

2,00X

2,50X

3,00X

3,50X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC

Speed-up (Higher is Better)

Why did OpenACC

slow down here?

Intel Xeon E5-

2698 v3 @

2.30GHz

(Haswell)

vs.

NVIDIA Tesla

K40

42

PCIe CopiesPCIe Copies

104ms/iteration104ms/iteration

43

Excessive Data Transfers

while (err > tol && iter < iter_max)

{

err=0.0;

...

}

#pragma acc kernels

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] +

A[j][i-1] + A[j-1][i] +

A[j+1][i]);

err = max(err, abs(Anew[j][i] –

A[j][i]);

}

}

...

A, Anew resident

on host

A, Anew resident

on host

A, Anew resident

on host

A, Anew resident

on host

A, Anew resident on

accelerator

A, Anew resident on

accelerator

A, Anew resident on

accelerator

A, Anew resident on

accelerator

These copies

happen every

iteration of the

outer while

loop!

These copies

happen every

iteration of the

outer while

loop!

C

op

y

C

op

y

44

Identifying Data Locality

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc kernels

{

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

Does the CPU need the data between

these loop nests?

Does the CPU need the data between

iterations of the convergence loop?

45

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

46

Data regions

The data directive defines a region of code in which GPU arrays remain on
the GPU and are shared among all kernels in that region.

#pragma acc data

{

#pragma acc kernels

...

#pragma acc kernels

...

}

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

47

Data Clauses

copy (list) Allocates memory on GPU and copies data from host to GPU

when entering region and copies data to the host when

exiting region.

copyin (list) Allocates memory on GPU and copies data from host to GPU

when entering region.

copyout (list) Allocates memory on GPU and copies data to the host when

exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another containing

data region.

deviceptr(list) The variable is a device pointer (e.g. CUDA) and can be

used directly on the device.

48

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:nelem]) copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)) copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

49

Express Data Locality
#pragma acc data copy(A) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc kernels

{

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Create Anew as a device

temporary.

Copy A to/from the

accelerator only when

needed.

Create Anew as a device

temporary.

50

Rebuilding the code

50

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Generating copy(A[:][:])

Generating create(Anew[:][:])

Loop not vectorized/parallelized: potential early exits

56, Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */

59, #pragma acc loop vector(256) /* threadIdx.x */

56, Generating Tesla code

59, Loop is parallelizable

67, Accelerator kernel generated

68, #pragma acc loop gang /* blockIdx.x */

70, #pragma acc loop vector(256) /* threadIdx.x */

67, Generating Tesla code

70, Loop is parallelizable

51

Visual Profiler: Data Region

51

Iteration 1 Iteration 2

Was 104ms

52

1,00X
1,90X

3,20X
3,74X 3,83X

19,89X

0,00X

5,00X

10,00X

15,00X

20,00X

25,00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC

Speed-Up (Higher is Better)

Socket/Socket:

5.2X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40

53

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

54

The loop Directive

The loop directive gives the compiler additional information about the next loop in
the source code through several clauses.

• independent – all iterations of the loop are independent

• collapse(N) – turn the next N loops into one, flattened loop

• tile(N[,M,…]) - break the next 1 or more loops into tiles based on the
provided dimensions.

These clauses and more will be discussed in greater detail in a later class.

55

Optimize Loop Performance
#pragma acc data copy(A) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc kernels

{

#pragma acc loop device_type(nvidia) tile(32,4)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc loop device_type(nvidia) tile(32,4)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

“Tile” the next two loops

into 32x4 blocks, but

only on NVIDIA GPUs.

“Tile” the next two loops

into 32x4 blocks, but

only on NVIDIA GPUs.

56

1,00X

1,90X

3,20X
3,74X 3,83X

19,89X

21,22X

0,00X

5,00X

10,00X

15,00X

20,00X

25,00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC OpenACC Tuned

Speed-Up (Higher is Better)

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40

57

The OpenACC Toolkit

58

Introducing the New OpenACC Toolkit
Free Toolkit Offers Simple & Powerful Path to Accelerated Computing

PGI Compiler
Free OpenACC compiler for academia

NVProf Profiler
Easily find where to add compiler directives

Code Samples
Learn from examples of real-world algorithms

Documentation
Quick start guide, Best practices, Forums

http://developer.nvidia.com/openacc

GPU Wizard
Identify which GPU libraries can jumpstart code

http://developer.nvidia.com/openacc

59

Download the OpenACC Toolkit

Go to
https://developer.nvidia.com/openacc

https://developer.nvidia.com/openacc

60

Download the OpenACC Toolkit

Go to
https://developer.nvidia.com/openacc

Register for the toolkit

If you are an academic developer, be sure
to click the check box at the bottom.

https://developer.nvidia.com/openacc

61

Download the OpenACC Toolkit

Go to
https://developer.nvidia.com/openacc

Register for the toolkit

If you are an academic developer, be sure
to click the check box at the bottom.

You will receive an email from NVIDIA

Be sure to read the Quick Start Guide

https://developer.nvidia.com/openacc

62

Windows/Mac Developers

• The OpenACC Toolkit is only available on Linux, however…

• The PGI compiler is available on Mac and Windows from
http://www.pgroup.com/support/trial.htm

• You should still register for the OpenACC Toolkit to get the 90 day license.

• The CUDA Toolkit contains the libraries and profiling tools that will be used in this
course.

• https://developer.nvidia.com/cuda-zone

• The OpenACC Programming Guide is available from http://bit.ly/openacc-guide

• Obtaining all examples and guides from the toolkit will still require downloading the
full OpenACC toolkit.

http://www.pgroup.com/support/trial.htm
https://developer.nvidia.com/cuda-zone
http://bit.ly/openacc-guide

63

Install the OpenACC Toolkit

Go to
developer.nvidia.com/openacc

Register for the OpenACC
Toolkit

Install on your personal

machine. (Linux Only)

http://developer.nvidia.com/openacc

64

Where to find help

• OpenACC Course Recordings - https://developer.nvidia.com/openacc-course

• OpenACC on StackOverflow - http://stackoverflow.com/questions/tagged/openacc

• OpenACC Toolkit - http://developer.nvidia.com/openacc

Additional Resources:

• Parallel Forall Blog - http://devblogs.nvidia.com/parallelforall/

• GPU Technology Conference - http://www.gputechconf.com/

• OpenACC Website - http://openacc.org/

https://developer.nvidia.com/openacc-course
http://stackoverflow.com/questions/tagged/openacc
http://developer.nvidia.com/openacc
http://devblogs.nvidia.com/parallelforall/
http://www.gputechconf.com/
http://openacc.org/

OpenACC is a user-driven directive-based performance-portable
parallel programming model. It is designed for scientists and
engineers interested in porting their codes to a wide-variety of
heterogeneous HPC hardware platforms and architectures with
significantly less programming effort than required with a low-level
model.

Then, follow the exercises of the OpenAcc tutorial:
https://www.openacc.org/get-started

Get Started

https://www.openacc.org/get-started

THANK YOU

	Slide 1: An (almost) Easy INTRODUCTION TO OPENACC®
	Slide 2: Acknowledgements
	Slide 3: GPU Computing is Powerful…
	Slide 4: (REMEMBER) INTRODUCTION TO PARALLEL PROGRAMMING
	Slide 5: Remember: WHAT IS PARALLEL PROGRAMMING?
	Slide 6: A REAL WORLD CASE STUDY
	Slide 7: WHAT IS PARALLEL PROGRAMMING?
	Slide 8: SEQUENTIAL SOLUTION
	Slide 9: SEQUENTIAL SOLUTION
	Slide 10: SEQUENTIAL SOLUTION
	Slide 11: PARALLEL SOLUTION
	Slide 12: PIPELINE
	Slide 13: PIPELINE STALL
	Slide 14: GRADING EXAMPLE SUMMARY
	Slide 15: (Remember) AMDAHL’S LAW
	Slide 16: AMDAHL’S LAW
	Slide 17: APPLYING AMDAHL’S LAW
	Slide 18: (NOW) AN INTRODUCTION TO OPENACC
	Slide 19
	Slide 20
	Slide 21: OpenACC Directives
	Slide 22: OPENACC PORTABILITY
	Slide 23: OPENACC
	Slide 24: OPENACC
	Slide 25: OPENACC
	Slide 26: OPENACC
	Slide 27: OPENACC
	Slide 28: OPENACC
	Slide 29: OPENACC
	Slide 30: OPENACC RESOURCES
	Slide 31
	Slide 32
	Slide 33: Example: Jacobi Iteration
	Slide 34: Jacobi Iteration: C Code
	Slide 35
	Slide 36: Identify Parallelism
	Slide 37
	Slide 38: OpenACC kernels Directive
	Slide 39: Parallelize with OpenACC kernels
	Slide 40: Building the code
	Slide 41
	Slide 42
	Slide 43: Excessive Data Transfers
	Slide 44: Identifying Data Locality
	Slide 45
	Slide 46: Data regions
	Slide 47: Data Clauses
	Slide 48: Array Shaping
	Slide 49: Express Data Locality
	Slide 50: Rebuilding the code
	Slide 51: Visual Profiler: Data Region
	Slide 52
	Slide 53
	Slide 54: The loop Directive
	Slide 55: Optimize Loop Performance
	Slide 56
	Slide 57
	Slide 58: Introducing the New OpenACC Toolkit
	Slide 59: Download the OpenACC Toolkit
	Slide 60: Download the OpenACC Toolkit
	Slide 61: Download the OpenACC Toolkit
	Slide 62: Windows/Mac Developers
	Slide 63: Install the OpenACC Toolkit
	Slide 64: Where to find help
	Slide 65: Get Started
	Slide 66: THANK YOU

