
Practical Debugging & Performance Engineering
for High Performance Computing

Xavier Besseron
LuXDEM Research Centre
University of Luxembourg

SC-Camp 2023
May 14-20, 2023

Cartagena, Colombia

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 1 / 60

Overview

Part 1: Practical Debugging
• Tools for debugging
• List of common bugs
• Good practices to catch bugs

Part 2: Performance Engineering
• HPC hardware & performance bottlenecks
• Understanding CPU and memory
• Performance analysis and profiling tools

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 2 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Part I
Know Your Bugs: Weapons for Efficient Debugging

1 Introduction

2 Tools for Debugging
Compilers
GNU Debugger
Valgrind

3 Common bugs
Logic and syntax bugs
Arithmetic bugs
Memory related bugs
Multi-thread programming bugs
Performance bugs

4 Good practices to catch bugs

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 3 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Why debugging?
Bugs are in every programs

• Industry Average:
"about 15 - 50 errors per 1000 lines of delivered code" 1

Bugs in High Performance Computing
• Even more difficult due to concurrency
• Can crash super-computers
• Can waste large amount of CPU-time

Famous bugs and consequences
• Ariane 5 rocket destroyed in 1996: 1 billion US $
• Power blackout in US in 2003: 45 million people affected
• Medtronic heart device vulnerable to remote attack in 2008
• ...
1Code Complete by Steve McConnell

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 4 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Outline

2 Tools for Debugging
Compilers
GNU Debugger
Valgrind

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 5 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Tools for debugging

Compilers
• It’s the first program to check your code
• GCC, Intel Compiler, CLang, MS Compiler, ...

Static code analyzers
• Check the program without executing it
• Splint, Cppcheck, Coccinelle, ...

Debuggers
• Inspect/modify a program during its execution
• GDB: the GNU Project Debugger for serial and multi-thread programs
• Parallel debuggers (commercial): RogueWave Totalview, Allinea DDT

Dynamics code analyzers and profilers
• Check the program while executing it
• Valgrind, Gcov, Gprof, CLang sanitizers, ...
• Commercial software: Purify, Intel Parallel Inspector, ..

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 6 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Compilers 1/2

What does a compiler do?
• Translate source code to machine code
• 3 phases:

• Lexical analysis: recognize "words" or tokens
• Syntax analysis: build syntax tree according to language grammar
• Semantic analysis: check rules of the language, variable declaration, types, etc.

• With this knowledge, a compiler can find many bugs
→ Pay attention to compiler warnings and errors of a program

A compiler can find out if your program makes sense according to the language. However, it
cannot guess what you are trying to do.

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 7 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Compilers 2/2
How to use the compiler

• Choose your compiler

GCC CLang Intel Compiler
C gcc clang icc

C++ g++ clang++ icpc

Fortran gfortran ifort

• Activate warning messages with the -Wall parameters
• Warnings can be enabled/disabled individually, cf documentation
• Compile with debug symbols with -g parameters

Example
$ gcc -g -Wall program.c -o program
program.c: In function ’main’:
program.c:4:15: error: ’y’ undeclared (first use in this function)

int z = x + y;
^

program.c:4:15: note: each undeclared identifier is reported only once for each function it appears in
program.c:4:7: warning: unused variable ’z’ [-Wunused-variable]

int z = x + y;
^

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 8 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

GNU Debugger 1/2

GDB is the GNU Debugger
• Allow to execute a program step by step
• Watch the value of variables
• Stop the execution on given condition
• Show the backtrace of an error
• Modify value of variables at runtime

Starting GDB
• Compile your program with the -g option
• Start program execution with GDB

gdb --args myprogram arg1 arg2

• Or open a core file (generated after a crash) gdb myprogram corefile

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 9 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

GNU Debugger 2/2
Using GDB

• Command line tool
• Many graphical frontends available too: DDD, Qt Creator, ...
• Online documentation & tutorial:

http://sourceware.org/gdb/current/onlinedocs/gdb/

http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html

Main commands
• help <command>: get help about a command
• run: start execution
• continue: resume execute
• next: execute the next line
• break: set a breakpoint at a given line or function
• bracktrace: show the backtrace
• print: print the value of a variable
• quit: quit GDB

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 10 / 60

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_gdb.html

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Valgrind 1/3
Valgrind is a dynamic analysis tool

• Execute your program with dynamic checking tool:
Memcheck, Callgrind, Helgrind, etc.

Memcheck: memory error detector
• Enable with --tool=memcheck (by default)
• Check for memory-related errors:

unitialized values, out of bound access, stack overflow, memory leak, etc.
• For memory leaks, add option --leak-check=full

• http://valgrind.org/docs/manual/mc-manual.html

Callgrind: performance profiler
• Enable with --tool=callgrind

• Check the time you spend in each function of your code
• Visualize results with KCachegrind
• http://valgrind.org/docs/manual/cl-manual.html

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 11 / 60

http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/cl-manual.html

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Valgrind 2/3

Example: memory errors with Memcheck
$ valgrind --tool=memcheck --leak-check=full --track-origins=yes ./program
[...]
==12534== Conditional jump or move depends on uninitialised value(s)
==12534== at 0x40055E: main (program.c:11)
==12534== Uninitialised value was created by a stack allocation
==12534== at 0x400536: main (program.c:5)
==12534==
==12534== Invalid write of size 8
==12534== at 0x4005CE: main (program.c:19)
==12534== Address 0x5203f80 is 0 bytes after a block of size 8,000 alloc’d
==12534== at 0x4C2BBA0: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==12534== by 0x400555: main (program.c:9)
==12534==
==12534==
==12534== HEAP SUMMARY:
==12534== in use at exit: 8,000 bytes in 1 blocks
==12534== total heap usage: 1 allocs, 0 frees, 8,000 bytes allocated
==12534==
==12534== 8,000 bytes in 1 blocks are definitely lost in loss record 1 of 1
==12534== at 0x4C2BBA0: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==12534== by 0x400555: main (program.c:9)
[...]

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 12 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Valgrind 3/3
Example: profiling with Callgrind
$ valgrind --tool=callgrind ./program

Example: Visualizing profile with KCachegrind

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 13 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Outline

3 Common bugs
Logic and syntax bugs
Arithmetic bugs
Memory related bugs
Multi-thread programming bugs
Performance bugs

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 14 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Logic and syntax bugs

Due to careless programming
• Infinite loop / recursion
• Confusing syntax error,

eg use of = (affectation) instead of == (equality)
• Hard to detect, because everything is correct in your mind

What to do?
• Compile with warnings enabled
• Get some rest and/or an external advice

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 15 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Integer overflow 1/2

Integer variables have limited size

Size Minimum Maximum
signed short 16 bits −215 215 − 1

unsigned short 16 bits 0 216 − 1
signed int 32 bits −231 231 − 1

unsigned int 32 bits 0 232 − 1
signed long long int 64 bits −263 263 − 1

unsigned long long int 64 bits 0 264 − 1

If the result of an operation cannot fit in the variable,
most-significant bits are discarded
⇒ we have an Integer Overflow

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 16 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Integer overflow 2/2

Overflow example

unsigned char A = 200;

unsigned char B = 60;

// Overflow!
unsigned char S = A + B;

0 0 1 1 1 1 0 0

0 0 0 0 0 1 0 01

1 1 0 0 0 0 01

+

=

200

60

4

+

=

→ No error at runtime!

What to do?
• Use the right integer type for your data
• In C/C++/Fortran, overflow needs to be checked manually
• CLang and GCC 5.X offer builtin functions to check for overflow
__builtin_add_overflow, __builtin_sub_overflow,
__builtin_mul_overflow, ...

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 17 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Floating-Point Number bugs 1/2
Floating-Point Exceptions (FPE)

• Division by zero:
X

0.0
= ∞

• Invalid operation: √
−1.0 = NaN (Not A Number)

• Overflow / Underflow:
e1e30 = ∞ e−1e30 = 0.0

Loss of precision
• The order of the operations matters:

(1060 + 1.0)− 1060 = 0.0

(1060 − 1060) + 1.0 = 1.0

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 18 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Floating-Point Number bugs 2/2

Floating-Point Exceptions and Errors
• No error at runtime by default
• Errors can propagate through all the computation

What to do?
• Enable errors at runtime in C/C++

#define _GNU_SOURCE
#include <fenv.h>

int main()
{

feenableexcept(FE_DIVBYZERO|FE_INVALID| FE_OVERFLOW);
...

• Read "What Every Computer Scientist Should Know About Floating-Point Arithmetic"
by David Goldberg

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 19 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Memory allocation/deallocation
Dynamic memory management in C

• void *p = malloc(size) allocates memory
• free(p) de-allocates the corresponding memory
• In C++, equivalents are new and delete operations

Common mistakes
• Failed memory allocation
• Free non-allocated memory
• Free memory twice (double free error)

These mistakes might not trigger an error immediately
Later on, they can cause crashes and undefined behavior

What to do?
• Check return code (cf documentation)
• Use Valgrind with --leak-check=full to catch it

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 20 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Memory leaks

Memory is allocated but never freed
• Allocated memory keeps growing until it fills the computer memory
• Can causes a crash of the program or of the full computer
• Very common is C program, almost impossible in Fortran, Java

What to do?
• For each malloc(), there should be a corresponding free()

• Use Valgrind with --leak-check=full to catch it

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 21 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Using undefined values

Undefined values
• Uninitialized variable
• Not allocated or already freed memory

Can cause undefined/unpredictable behavior
• Difficult to track
• Error might not occur immediately
• It can compute incorrect result

What to do?
• Compile with -Wuninitialized or -Wall
• Use Valgrind, it should show error
Conditional jump or move depends on uninitialised value(s)

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 22 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Stack overflow

Program stack
• Each function call create a new frame
• Function parameters and local variables

are allocated in the frame

Stack overflow
• Too many function calls

usually not-ending recursive calls
• Oversized local data

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 23 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Buffer overflow

Buffer overflow
• Write data in a buffer with an insufficient size
• Overwrite other data (variable, function return address)
• Can be a major security issue
• Can make the stack trace unreadable

What to do?
• Use functions that check the buffer size:
strcpy() → strncpy(), sprintf() → snprintf(), etc.

• GCC option -fstack-protector checks buffer overflow

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 24 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Out of bound access

Read/write outside of the bound of an array
• Mismatch in the bound of an array: [0,N − 1] in C, [1,N] in Fortran
• Out of bound reading can cause undefined behavior
• Out of bound writing can cause memory corruption

What to do?
• Use Valgrind, it should show error
Invalid read/write of size X

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 25 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Input/Output errors

Errors when reading/writing in files
• Usually have an external cause:

• Disk full
• Quota exceeded
• Network interruption

• System call will return an error or hang

What to do?
• Always can check the return code
• Usually stop execution with an explicit message

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 26 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 1/3

"Debugging programs containing race conditions is no fun at all." Andrew S. Tanenbaum,
Modern Operating Systems

Race condition
• A timing dependent error involving shared state
• It runs fine most of the time, and from time to time,

something weird and unexplained appears

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 27 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{

account->balance += amount;

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010

Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010

Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 2/3
Code example

void deposit(Account* account, double amount)
{
READ balance
ADD amount
WRITE balance

}

Concurrent execution
Thread 1 calls deposit(A,10)

READ balance (0)

ADD 10
WRITE balance (10)

Thread 2 calls deposit(A,1000)

READ balance (0)
ADD 1000
WRITE balance (1000)

Result: balance is 10 instead of 1010
Without protection, any interleave combination is possible!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 28 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Race condition 3/3

Different kind of race conditions
• Data race: Concurrent accesses to a shared variable
• Atomicity bugs: Code does not enforce the atomicity for a group of memory accesses,

eg Time of check to time of use
• Order bugs: Operations are not executed in order

Compilers and processors can actually re-order instructions

What to do?
• Protect critical sections: Mutexes, Semaphores, etc.
• Use atomic instructions and memory barriers (low level)
• Use compiler builtin for atomic operations2 (higher level)

2https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html
Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 29 / 60

https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/_005f_005fatomic-Builtins.html

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 1/3

Deadlock, photograph by David Maitland

"I would love to have seen them go their separate ways, but I was
exhausted. The frog was all the time trying to pull the snake off, but the
snake just wouldn’t let go."

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 30 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 2/3

Code example

void deposit(Account* account,
double amount)

{
lock(account->mutex);
account->balance += amount;
unlock(account->mutex);

}

void transfer(Account* accA,
Account* accB,
amount)

{
lock(accA->mutex);
lock(accB->mutex);
accA->balance += amount;
accB->balance -= amount;
unlock(accA->mutex);
unlock(accB->mutex);

}

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 31 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Deadlock 3/3
Concurrent execution

Thread 1 calls transfer(A,B,10)

lock(A->mutex);

lock(B->mutex); // wait until
B is unlocked

...

Thread 2 calls transfer(B,A,20)

lock(B->mutex);

lock(A->mutex); // wait until
A is unlocked

...

We have a deadlock!

What to do?
• Think before writing multithread code
• Use high level programming model: Open MP, Intel TBB, MPI, etc.
• Theoretical analysis
• Software for thread safety analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 32 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Performance bugs

Bad Performance can be seen as a bug
• Bad algorithm: too high computation complexity

Example: Insertion Sort is O(N2), Quick Sort is O(N.log(N))

• Memory copies can be a problem,
specially with Object Oriented languages

• Some memory allocator have issues:
memory alignment constraints, multithread context

What to do?
• Try use existing proven libraries when possible:

eg Eigen library for linear algebra, C++ STL, Boost, etc.
• Use a profiler to see where your program spend most of its time

Valgrind with Callgrind, GNU gprof, many commercial tools ...
• ...

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 33 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Outline

4 Good practices to catch bugs

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 34 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Be a good programmer
Write good code

• Use explicit variable names, don’t re-use variables
• Avoid global variables (problematic in multi-threads)
• Comment and document your code
• Keep your code simple, don’t try to over-optimize

Use defensive programming
• Add assertions, cf assert()
• Always check return codes, cf manpages and documentation

Re-use existing libraries
• Use existing libraries when available/possible
• Probably better optimized and tested than your code

⇒ Code easier to understand and maintain
⇒ Catch bugs as soon as possible

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 35 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Compilers and Tests
Use your compilers

• Enable (all) warnings of the compiler
• Vary the compilers and configurations

• Different compilers (GCC, CLang, Intel Compiler, MS Compiler)
• Various architectures (Windows/Linux, x86/x86_64/ARM)

Testing and Code Checking
• Write unit tests and regression tests
• Use coverage analysis tools
• Use static and dynamic code analysis tools
• Continuous integration:

• Frequent compilation, testing, execution
• Different configurations and platforms

⇒ Catch more warnings and errors
⇒ Better portability

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 36 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Know your tools
Know the error messages

• Look in the documentation / online
• Compiler errors/warnings
• Runtime errors:

Segmentation fault, Floating point exception, Double free, etc.

• Valgrind errors:
Invalid read of size 4
Conditional jump or move depends on uninitialised value(s)
8 bytes in 1 blocks are definitely lost

...

Use the right tool
• Know your tools and when to use them

• GDB: locate a crash
• Valgrind: memory-related issue
• ...

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 37 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Debug with methodology

Find a minimal case to reproduce the bug
• Some bugs are intermittent
• Easier to debug
• Help you to understand the cause
• Allow to check that the bug is really fixed
• Bonus: make a regression test

Use a Control Version System (GIT, SVN, ...)
• Keep history, serve as a backup, allow to go back in time
• GIT has a nice feature of code bisection in history to find when a bug has been

introduced

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 38 / 60

Introduction Tools for Debugging Common bugs Good practices to catch bugs

Any question about debugging?

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 39 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Part 2
Performance Engineering

5 HPC Hardware & Performance Bottlenecks
Processor bottleneck
Memory Access bottleneck
Memory Size bottleneck
Storage Speed bottleneck
Network bottleneck

6 Understanding CPU and Memory

7 Tools for Performance Analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 40 / 60

"Ruches Haute-Savoie" (CC BY-SA 3.0) by Myrabella

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Getting faster: Identify performance bottlenecks
Know the hardware

• Computer nodes are connected using a fast interconnect
• Different types of resources:

Processors, GPU, Memory, Storage, Network

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 41 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Getting faster: Identify performance bottlenecks
Know the hardware

• Computer nodes are connected using a fast interconnect
• Different types of resources:

Processors, GPU, Memory, Storage, Network

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 41 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Getting faster: Identify performance bottlenecks
Know the hardware

• Computer nodes are connected using a fast interconnect
• Different types of resources:

Processors, GPU, Memory, Storage, Network

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 41 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Getting faster: Identify performance bottlenecks
Know the hardware

• Computer nodes are connected using a fast interconnect
• Different types of resources:

Processors, GPU, Memory, Storage, Network

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 41 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Getting faster: Identify performance bottlenecks
Know the hardware

• Computer nodes are connected using a fast interconnect
• Different types of resources:

Processors, GPU, Memory, Storage, Network

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 41 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Getting faster: Identify performance bottlenecks
Know the hardware

• Computer nodes are connected using a fast interconnect
• Different types of resources:

Processors, GPU, Memory, Storage, Network

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 41 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Processor bottleneck
Application is limited by the speed of the processor

→ Optimize your code: better algorithm & implementation
→ Parallel execution on a single node (pthread, OpenMP, Intel TBB)
→ Use GPU accelerator (CUDA)
→ Parallel execution on multiple nodes (MPI)
→ Parallel execution on multiple nodes with GPUs (MPI+CUDA)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 42 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Processor bottleneck
Application is limited by the speed of the processor
→ Optimize your code: better algorithm & implementation

→ Parallel execution on a single node (pthread, OpenMP, Intel TBB)
→ Use GPU accelerator (CUDA)
→ Parallel execution on multiple nodes (MPI)
→ Parallel execution on multiple nodes with GPUs (MPI+CUDA)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 42 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Processor bottleneck
Application is limited by the speed of the processor
→ Optimize your code: better algorithm & implementation
→ Parallel execution on a single node (pthread, OpenMP, Intel TBB)

→ Use GPU accelerator (CUDA)
→ Parallel execution on multiple nodes (MPI)
→ Parallel execution on multiple nodes with GPUs (MPI+CUDA)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 42 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Processor bottleneck
Application is limited by the speed of the processor
→ Optimize your code: better algorithm & implementation
→ Parallel execution on a single node (pthread, OpenMP, Intel TBB)
→ Use GPU accelerator (CUDA)

→ Parallel execution on multiple nodes (MPI)
→ Parallel execution on multiple nodes with GPUs (MPI+CUDA)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 42 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Processor bottleneck
Application is limited by the speed of the processor
→ Optimize your code: better algorithm & implementation
→ Parallel execution on a single node (pthread, OpenMP, Intel TBB)
→ Use GPU accelerator (CUDA)
→ Parallel execution on multiple nodes (MPI)

→ Parallel execution on multiple nodes with GPUs (MPI+CUDA)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 42 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Processor bottleneck
Application is limited by the speed of the processor
→ Optimize your code: better algorithm & implementation
→ Parallel execution on a single node (pthread, OpenMP, Intel TBB)
→ Use GPU accelerator (CUDA)
→ Parallel execution on multiple nodes (MPI)
→ Parallel execution on multiple nodes with GPUs (MPI+CUDA)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 42 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Access bottleneck
Application is limited by the speed of the memory

• There is one memory bank attached to each CPU

→ Cache and memory access optimization
→ Use more memory banks to increase the memory bandwidth

→ Use multiple CPUs inside one node (pthread, OpenMP, ...)
→ Distribute the memory access on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 43 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Access bottleneck
Application is limited by the speed of the memory

• There is one memory bank attached to each CPU
→ Cache and memory access optimization

→ Use more memory banks to increase the memory bandwidth
→ Use multiple CPUs inside one node (pthread, OpenMP, ...)
→ Distribute the memory access on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 43 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Access bottleneck
Application is limited by the speed of the memory

• There is one memory bank attached to each CPU
→ Cache and memory access optimization
→ Use more memory banks to increase the memory bandwidth

→ Use multiple CPUs inside one node (pthread, OpenMP, ...)
→ Distribute the memory access on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 43 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Access bottleneck
Application is limited by the speed of the memory

• There is one memory bank attached to each CPU
→ Cache and memory access optimization
→ Use more memory banks to increase the memory bandwidth

→ Use multiple CPUs inside one node (pthread, OpenMP, ...)

→ Distribute the memory access on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 43 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Access bottleneck
Application is limited by the speed of the memory

• There is one memory bank attached to each CPU
→ Cache and memory access optimization
→ Use more memory banks to increase the memory bandwidth

→ Use multiple CPUs inside one node (pthread, OpenMP, ...)
→ Distribute the memory access on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 43 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Size bottleneck
Application is limited by the size of the memory

→ Use a node with a bigger memory
→ Distributed execution on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 44 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Size bottleneck
Application is limited by the size of the memory
→ Use a node with a bigger memory

→ Distributed execution on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 44 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Memory Size bottleneck
Application is limited by the size of the memory
→ Use a node with a bigger memory
→ Distributed execution on multiple nodes (MPI)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 44 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Storage Speed bottleneck
Application is limited by the speed of the storage

→ Use local storage instead of network storage
(copy data back to network storage after execution)

→ Use local memory, eg /dev/shm (space is limited!)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 45 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Storage Speed bottleneck
Application is limited by the speed of the storage
→ Use local storage instead of network storage

(copy data back to network storage after execution)

→ Use local memory, eg /dev/shm (space is limited!)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 45 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Storage Speed bottleneck
Application is limited by the speed of the storage
→ Use local storage instead of network storage

(copy data back to network storage after execution)
→ Use local memory, eg /dev/shm (space is limited!)

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 45 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Network bottleneck
Application is limited by the speed of the network
(too many communications)

→ Use Infiniband network instead of Ethernet
→ Reduce the number of nodes

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 46 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Network bottleneck
Application is limited by the speed of the network
(too many communications)
→ Use Infiniband network instead of Ethernet

→ Reduce the number of nodes

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 46 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Network bottleneck
Application is limited by the speed of the network
(too many communications)
→ Use Infiniband network instead of Ethernet
→ Reduce the number of nodes

Network

Computer Node Computer Node Computer Node Computer Node

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Network
Storage

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Memory

GPU
Local

Storage

core
CPU

core core
CPU

core

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 46 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Outline

6 Understanding CPU and Memory

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 47 / 60

"Insect anatomy diagram" by Piotr Jaworski

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Finding the bottlenecks

Models, Methodologies and Tools
• Methodology: Top-Down Approach

→ identifies the cause of the bottleneck in the CPU
→ implemented in Intel VTune

• Model: Roofline Model
→ model the performance of an algorithm
→ implemented in Intel Advisor

• Tools: Many performance profilers
→ Arm Forge, Intel Toolsuite, Valgrind, etc. Top-Down Approach

10.1109/ISPASS.2014.6844459

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 48 / 60

https://doi.org/10.1109/ISPASS.2014.6844459

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Model Overview

Model of
the CPU

Model of
the algorithm

Model of the
performance

• Estimate the performance of an algorithm on a given CPU
• Also applies to GPUs, TPUs, etc.

• Throughput oriented model
• Identify the bottleneck
• Allow to improve the implementation of an algorithm

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 49 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Model

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 50 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Model

Peak performance limited by

● Compute operations: Gflop/s
● Data bandwidth: GB/s

CPU

(compute, flop/s)

FPU FPU
Memory

(data, GB)
Bandwidth

(GB/s)

Model of a CPU

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 50 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Model

Peak performance limited by

● Compute operations: Gflop/s
● Data bandwidth: GB/s

Algorithm characteristics

● Operations: Gflop
● Data: GB

CPU

(compute, flop/s)

FPU FPU
Memory

(data, GB)
Bandwidth

(GB/s)

A

(data, GB)

B

(data, GB)

C

(data, GB)

Operations
(flop)

Model of a CPUModel of an algorithm

Arithmetic Intensity
AI: flop / Byte

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 50 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Model

Peak performance limited by

● Compute operations: Gflop/s
● Data bandwidth: GB/s

Algorithm characteristics

● Operations: Gflop
● Data: GB

CPU

(compute, flop/s)

FPU FPU
Memory

(data, GB)
Bandwidth

(GB/s)

A

(data, GB)

B

(data, GB)

C

(data, GB)

Operations
(flop)

Model of a CPUModel of an algorithm

Arithmetic Intensity
AI: flop / Byte

Gflop/s = min
Peak Gflop/s

AI x Peak GB/s

Attainable
performance

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 50 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Model

Peak performance limited by

● Compute operations: Gflop/s
● Data bandwidth: GB/s

Algorithm characteristics

● Operations: Gflop
● Data: GB

CPU

(compute, flop/s)

FPU FPU
Memory

(data, GB)
Bandwidth

(GB/s)

A

(data, GB)

B

(data, GB)

C

(data, GB)

Operations
(flop)

Model of a CPUModel of an algorithm

Arithmetic Intensity
AI: flop / Byte

Gflop/s = min
Peak Gflop/s

AI x Peak GB/s

Attainable
performance

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 50 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Plot

P
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

Peak G
B/s x

 AI

Peak Gflop/s

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 51 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Plot

P
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

Peak G
B/s x

 AI

Peak Gflop/s Attainable Gflop/s

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 51 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Plot

Compute-boundMemory-boundP
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

Peak G
B/s x

 AI

Peak Gflop/s Attainable Gflop/s

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 51 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Roofline Plot

Compute-boundMemory-boundP
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

Peak G
B/s x

 AI

Peak Gflop/s Attainable Gflop/s

Algorithm with given AI

Measured
performance

Maximal
attainable

performance

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 51 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Advanced Roofline Plot

P
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

DRAM Peak G
B/s x A

I

Peak Gflop/s with SIMD L2 Cache Peak G
B/s x

 AI

Peak Gflop/s without SIMD

SIMD = Single Instruction, Multiple Data, ie vectorized instructions

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 52 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Advanced Roofline Plot

P
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

DRAM Peak G
B/s x

 AI

Peak Gflop/s with SIMD L2 Cache Peak G
B/s x

 AI

Peak Gflop/s without SIMD

Attainable Gflop/s with
cache optimization and SIMD

SIMD = Single Instruction, Multiple Data, ie vectorized instructions

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 52 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Advanced Roofline Plot

P
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

DRAM Peak G
B/s x

 AI

Peak Gflop/s with SIMD L2 Cache Peak G
B/s x

 AI

Peak Gflop/s without SIMD

Attainable Gflop/s with
cache optimization and SIMD

Attainable Gflop/s without
cache optimization and SIMD

SIMD = Single Instruction, Multiple Data, ie vectorized instructions

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 52 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Advanced Roofline Plot

P
er

fo
rm

an
ce

 [G
flo

p/
s]

 (l
og

sc
al

e)

Arithmetic Intensity [flop/Byte] (logscale)

DRAM Peak G
B/s x

 AI

Peak Gflop/s with SIMD L2 Cache Peak G
B/s x

 AI

Peak Gflop/s without SIMD

Attainable Gflop/s with
cache optimization and SIMD

Attainable Gflop/s without
cache optimization and SIMDAlgo1 requires

cache optimization

Algo2 requires
vectorization

Change algorithm to
reduce data access

SIMD = Single Instruction, Multiple Data, ie vectorized instructions

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 52 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Comments about the Roofline Model

In theory
• Gives good insight of the bottleneck of a given algorithm
• Guides and gives an upperbound/objective for optimization

In practice, use automatic tools
• CPU model can be hard to find
• Algorithm characterization is hard for complex algorithm or loops

Warnings
• The Roofline Model tells if an algorithm performs well,
• not if the algorithm is the best for your problem

e.g. Bubble sort O(n2) vs Quicksort O(n · log n)

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 53 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

More about the Roofline Model

Tools
• CS Roofline Toolkit, Berkeley Lab
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

• LIKWID, RRZE-HPC
https://github.com/RRZE-HPC/likwid

• Intel Advisor, Intel
https://software.intel.com/en-us/advisor

References
• Roofline: An Insightful Visual Performance Model for Multicore Architectures, Williams et al., CACM, 2009

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

• Performance Tuning of Scientific Codes with the Roofline Model, Williams et al., SC’18 Tutorial, 2018
https://crd.lbl.gov/assets/Uploads/SC18-Roofline-1-intro.pdf

• Applying the roofline model, Ofenbeck et al., ISPASS, 2014
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/ispass-2013_177.pdf

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 54 / 60

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://github.com/RRZE-HPC/likwid
https://software.intel.com/en-us/advisor
https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
https://crd.lbl.gov/assets/Uploads/SC18-Roofline-1-intro.pdf
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/ispass-2013_177.pdf

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Outline

7 Tools for Performance Analysis

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 55 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Tools for Performance Analysis 1/3

HPC specific tools - Arm (prev. Allinea)
• Arm DDT (part of Arm Forge)

• Visual debugger for C, C++, Fortran & Python // code
• Arm MAP (part of Arm Forge)

• Visual profiler for C, C++, Fortran & Python
• Arm Performance Reports

• Application characterization tool

Arm tools are commercial tools that require a license!

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 56 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Tools for Performance Analysis 2/3

HPC specific tools - Intel
• Intel Advisor

• Vectorization + threading advisor: check blockers and opport.
• Intel Inspector

• Memory and thread debugger: check leaks/corrupt., data races
• Intel Trace Analyzer and Collector

• MPI communications profiler and analyzer: evaluate patterns
• Intel VTune Amplifier

• Performance profiler: CPU/FPU data, mem. + storage accesses

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 57 / 60

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-vtune-amplifier-xe

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Tools for Performance Analysis 3/3

Generic profilers
• gprof, Valgrind, perf, gperftools

HPC specific tools - Scalasca & friends
• Scalasca

• Study behavior of // apps. & identify optimization opport.
• Score-P

• Instrumentation tool for profiling, event tracing, online analysis.
Extra-P

• Automatic performance modeling tool for // apps.

Free and Open Source!
See other awesome tools at http://www.vi-hps.org/tools

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 58 / 60

http://www.scalasca.org
http://www.vi-hps.org/projects/score-p/
http://www.scalasca.org/software/extra-p
http://www.vi-hps.org/tools

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Summary

Know the hardware

Know your application
• Identify the bottleneck: monitoring & profiling

Optimize your code
• Work on the algorithm
• Parallelization: pick the right approach
• Use quantitative measures of the performance

• e.g. FLOPS, bandwidth usage, unbalance, etc.
• measure effect of optimization
• identify when optimization is over

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 59 / 60

HPC Hardware & Performance Bottlenecks Understanding CPU and Memory Tools for Performance Analysis

Any question about performance engineering?

"Question Mark caterpillar" (CC BY-NC-SA 2.0)
by Keith Roragen

Xavier Besseron Practical Debugging & Performance Engineering for High Performance Computing 60 / 60

	Debugging
	Introduction
	Tools for Debugging
	Compilers
	GNU Debugger
	Valgrind

	Common bugs
	Logic and syntax bugs
	Arithmetic bugs
	Memory related bugs
	Multi-thread programming bugs
	Performance bugs

	Good practices to catch bugs

	Profiling
	HPC Hardware & Performance Bottlenecks
	Processor bottleneck
	Memory Access bottleneck
	Memory Size bottleneck
	Storage Speed bottleneck
	Network bottleneck

	Understanding CPU and Memory
	Tools for Performance Analysis

