
Introducing GPUs Architecture
- Important Aspects -

Carlos Jaime BARRIOS HERNANDEZ, PhD.

About Top500 List -2022
www.top500.org

http://www.top500.org/

Heterogeneous Computing

§ Terminology:
§ Host The CPU and its memory (host memory)
§ Device The GPU and its memory (device memory)

Host Device

Architecture Terminology

GPUCPU

GPGPU Accelerate Computing
Latency Processor + Throughput processor

Processing Flow

1. Copy input data from CPU memory to GPU memory

PCIe Bus

Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance

PCIe Bus

Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance
3. Copy results from GPU memory to CPU memory

PCIe Bus

Anatomy of a CUDA Application

Serial code executes in a Host (CPU) thread
Parallel code executes in many Device (GPU) threads

across multiple processing elements
CUDA Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU
…

Host = CPU

Device = GPU
...

Host = CPU

CUDA Kernels

Parallel portion of application: execute as a kernel
Entire GPU executes kernel, many threads

CUDA threads:
Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

CUDA Kernels: Parallel Threads

A kernel is a function executed on the
GPU as an array of threads in parallel

All threads execute the same code, can
take different paths

Each thread has an ID
Select input/output data

Control decisions

float x = input[threadIdx.x];
float y = func(x);
output[threadIdx.x] = y;

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks
Blocks are grouped into a grid
A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks
Blocks are grouped into a grid
A kernel is executed as a grid of blocks of threads

GPU

Kernel Execution

• Each kernel is executed on
one device

• Multiple kernels can
execute on a device at one
time

………

CUDA-enabled GPU

CUDA thread
• Each thread is executed

by a coreCUDA core

CUDA thread block

• Each block is executed by
one SM and does not
migrate

• Several concurrent blocks
can reside on one SM
depending on the blocks’
memory requirements and
the SM’s memory
resources

…

CUDA Streaming
Multiprocessor

CUDA kernel grid

...

Thread blocks allow cooperation

Threads may need to cooperate:
Cooperatively load/store blocks of memory that

they all use
Share results with each other or cooperate to

produce a single result
Synchronize with each other

Thread blocks allow scalability

Blocks can execute in any order, concurrently or sequentially
This independence between blocks gives scalability:

A kernel scales across any number of SMs

Device with 2 SMs
SM 0 SM 1

Block 0 Block 1
Block 2 Block 3
Block 4 Block 5
Block 6 Block 7

Kernel
Grid

LaunchBlock 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7

Device with 4 SMs
SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3
Block 4 Block 5 Block 6 Block 7

Memory hierarchy

Thread:
Registers
Local memory

Block of threads:
Shared memory

All blocks:
Global memory

void saxpy(int n, float a,

float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

int N = 1<<20;

// Perform SAXPY on 1M elements

saxpy(N, 2.0, x, y);

__global__

void saxpy(int n, float a,

float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

int N = 1<<20;

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

CUDA C
Standard C Parallel C

http://developer.nvidia.com/cuda-toolkit

http://developer.nvidia.com/cuda-toolkit

int N = 1<<20;

std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements

std::transform(x.begin(), x.end(),

y.begin(), y.end(),

2.0f * _1 + _2);

int N = 1<<20;

thrust::host_vector<float> x(N), y(N);

...

thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(), d_x.end(),

d_y.begin(), d_y.begin(),

2.0f * _1 + _2);

Thrust C++ Template Library
Serial C++ Code

with STL and Boost Parallel C++ Code

http://thrust.github.comwww.boost.org/libs/lambda

http://thrust.github.com/
http://www.boost.org/libs/lambda

CUDA Fortran

module mymodule contains
attributes(global) subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a
integer :: n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx%x-1)*blockDim%x
if (i<=n) y(i) = a*x(i)+y(i)

end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
real, device :: x_d(2**20), y_d(2**20)
x_d = 1.0, y_d = 2.0

! Perform SAXPY on 1M elements
call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d)

end program main

http://developer.nvidia.com/cuda-fortran

module mymodule contains
subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a
integer :: n, i
do i=1,n

y(i) = a*x(i)+y(i)
enddo

end subroutine saxpy
end module mymodule

program main
use mymodule
real :: x(2**20), y(2**20)
x = 1.0, y = 2.0

! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x, y)

end program main

Standard Fortran Parallel Fortran

http://developer.nvidia.com/cuda-fortran

Python
Copperhead: Parallel Python

http://copperhead.github.com

from copperhead import *
import numpy as np

@cu
def saxpy(a, x, y):

return [a * xi + yi

for xi, yi in zip(x, y)]

x = np.arange(2**20, dtype=np.float32)
y = np.arange(2**20, dtype=np.float32)

with places.gpu0:
gpu_result = saxpy(2.0, x, y)

with places.openmp:
cpu_result = saxpy(2.0, x, y)

import numpy as np

def saxpy(a, x, y):
return [a * xi + yi

for xi, yi in zip(x, y)]

x = np.arange(2**20, dtype=np.float32)
y = np.arange(2**20, dtype=np.float32)

cpu_result = saxpy(2.0, x, y)

http://numpy.scipy.org

Standard Python

http://copperhead.googlecode.com/
http://numpy.scipy.org/

Dynamic Parallelism

CPU Non Dynamic Parallelism CPU With Dynamic Parallelism

Dynamic Work Generation

Higher Performance
Lower Accuracy

Coarse grid

Lower Performance
Higher Accuracy

Fine grid Dynamic grid

Target performance where
accuracy is required

What is Dynamic Parallelism?

The ability to launch new kernels from the GPU
Dynamically - based on run-time data

Simultaneously - from multiple threads at once

Independently - each thread can launch a different grid

CPU GPU CPU GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

GPU

Familiar Programming Model

__global__ void B(float *data)

{
do_stuff(data);

X <<< ... >>> (data);
Y <<< ... >>> (data);

Z <<< ... >>> (data);
cudaDeviceSynchronize();

do_more_stuff(data);
}

A

B

C

X

Y

Z

CPU
int main() {

float *data;
setup(data);

A <<< ... >>> (data);
B <<< ... >>> (data);

C <<< ... >>> (data);

cudaDeviceSynchronize();
return 0;

}

Compiling a CUDA™ code

Using nvcc™ compilator
Visit this site and run the examples (after this sesion):

https://docs.nvidia.com/cuda/cuda-samples/index.html

Typical compiling
nvcc mycudacode.cu

Specific compilation
nvcc –(args) mycudacude.cu – (extensions)

https://docs.nvidia.com/cuda/cuda-samples/index.html

NVCC Compiler

–NVIDIA provides a CUDA-C compiler
– nvcc

–NVCC compiles device code then forwards code on
to the host compiler (e.g. g++)
–Can be used to compile & link host only

applications

Example 1: Hello World
int main() {
printf("Hello World!\n");
return 0;

}

Instructions:
1. Build and run the hello world code
2. Modify Makefile to use nvcc instead of g++
3. Rebuild and run

CUDA Example 1: Hello World

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

Instructions:
1. Add kernel and kernel launch to main.cu
2. Try to build

CUDA Example 1: Build Considerations
– Build failed

– Nvcc only parses .cu files for CUDA

– Fixes:
– Rename main.cc to main.cu
OR
– nvcc –x cu
– Treat all input files as .cu files

Instructions:
1. Rename main.cc to main.cu
2. Rebuild and Run

Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

– mykernel(does nothing, somewhat anticlimactic!)

Output:

$ nvcc main.cu
$./a.out
Hello World!

The Real and Complet « Hello World » in CUDA

Compiler Flags

– Remember there are two compilers being used
– NVCC: Device code
– Host Compiler: C/C++ code

– NVCC supports some host compiler flags
– If flag is unsupported, use –Xcompiler to forward to host

– e.g. –Xcompiler –fopenmp

– Debugging Flags
– -g: Include host debugging symbols
– -G: Include device debugging symbols
– -lineinfo: Include line information with symbols

CUDA-MEMCHECK

– Memory debugging tool
– No recompilation necessary

%> cuda-memcheck ./exe

– Can detect the following errors
– Memory leaks
– Memory errors (OOB, misaligned access, illegal instruction, etc)
– Race conditions
– Illegal Barriers
– Uninitialized Memory

– For line numbers use the following compiler flags:
– -Xcompiler -rdynamic -lineinfo

http://docs.nvidia.com/cuda/cuda-memcheck

NVIDIA-SMI

• nvidia-smi : The NVIDIA System Management Interface (nvidia-smi) is a command line utility, based
on top of the NVIDIA Management Library (NVML), intended to aid in the management and
monitoring of NVIDIA GPU devices.

• Explore the site: http://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries
and follow the instructions for the commands and see the information in the selected node of the
practice.

http://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

NVIDIA-SMI

• nvidia-smi : The NVIDIA System Management Interface (nvidia-smi) is a command line utility, based
on top of the NVIDIA Management Library (NVML), intended to aid in the management and
monitoring of NVIDIA GPU devices.

• Explore the site: http://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries
and follow the instructions for the commands and see the information in the selected node of the
practice.

http://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

Working at home!

https://cuda-tutorial.readthedocs.io/en/latest/

Follow the next tutorial using HPC facilities in the university:

https://cuda-tutorial.readthedocs.io/en/latest/

www.nvidia.com/dli

Thank you!
@carlosjaimebh

