Soft-error Sensitivity of Distributed Deep Learning 14th International SuperComputing Camp 2023

Esteban Meneses, PhD

Advanced Computing Laboratory
Costa Rica National High Technology Center
emeneses@cenat.ac.cr

Where do I come from?

Costa Rica, Central America

is not Puerto Rico
has no standing army since 1949
hosts 6% of world's biodiversity
produces 99% of its electricity from renewable sources

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models
Distributed Computing

Checkpoint

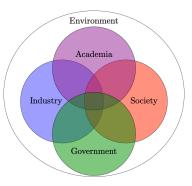
Design

Implementation Results

Soft-error Sensitivity

> xperimental Setup xperimental Results

Costa Rica National High Technology Center



Development through Knowledge

Advanced Computing Laboratory

Powered by a computing-centered diverse team

Collaborative Research Projects

Accelerating scientific discovery

Energy

Seismology

Biodiversity

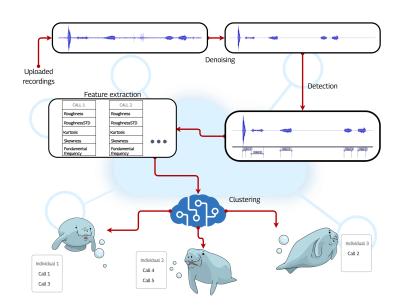
Bioinformatics

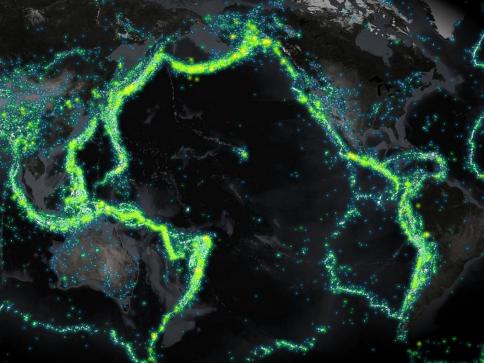
Climate

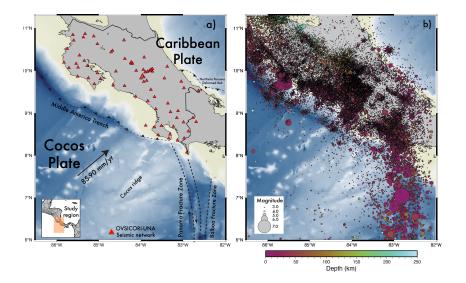
Epidemics

HPC

Health







Supercomputing Infrastructure

Simulation + Data Science + Artificial Intelligence + Bioinformatics

Advanced Computing Training

Empowering collaborators

Programming

Scientific Computing

Machine Learning

System Tutorial

Programming

Data Visualization

Statistical Analysis

Bioinformatics

Outline

Motivation

Distributed Deep Learning

Deep Learning Models Distributed Computing

Checkpoint Alteration

Design Implementation Results

Soft-error Sensitivity

Experimental Setup Experimental Results

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

eep Learning Models stributed Computing

Checkpoint

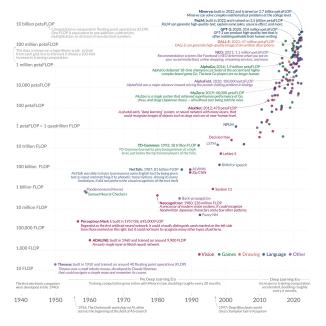
Design

Implementation

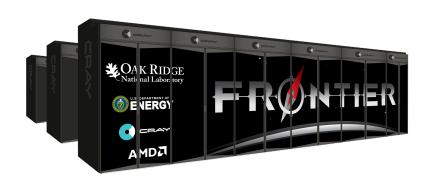
oft-error

ensitivity

perimental Setup perimental Results



Source: https://ourworldindata.org/



Component	Failure Rate	Failure Location
(system-wide)	(over one year)	(on/off node)
compute unit (soft error)	53.95%	on node
card	14.47%	off node
cable	8.55%	off node
link module	6.58%	off node
process/daemon	5.26%	off node
coolant monitor	4.61%	off node
other	6.58%	N/A
15. 6		IDD III

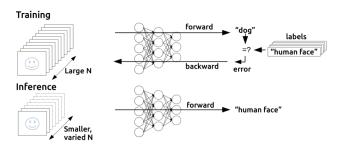
Source: Failure Analysis and Quantification for Contemporary and Future Supercomputers by Tan and DeBardeleben

Soft errors are prevalent due to:

- Component count
- Feature size vulnerability
- Energy savings through sub-threshold voltage
- Cost of detection logic

Deep Learning

Artificial Neural Networks



Source: https://developer.nvidia.com/

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models

Distributed Computing

Checkpoint

Design

Implementation

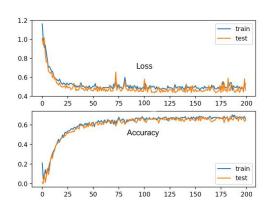
Soft-error Sensitivity

Experimental Setup

Experimental Results

Deep Learning Performance

Accuracy and loss metrics



Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep

Deep Learning Models
Distributed Computing

Checkpoint

Design

Implementation Results

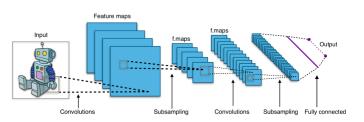
Soft-error Sensitivity

Experimental Setup

Experimental Results

Deep Learning Architecture

Many layers in specialized blocks



Typical structure of a convolutional neural network

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models

Distributed Computing

neckpoint teration

Design

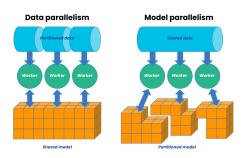
Implementation

ensitivity

Experimental Setup Experimental Results

Types of Distributed Deep Learning

Data parallel or model parallel



Source: https://www.anyscale.com/

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep

Deep Learning Models

Distributed Computing

Checkpoint

Design Implementation

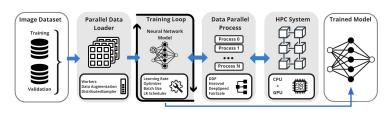
Soft-error

Experimental Setup

Experimental Results

Distributed Deep Learning Training

Mechanisms and tools



Elvis Rojas, Fabricio Quirós-Corella, Terry Jones, and Esteban Meneses. Large-Scale Distributed Deep Learning: A Study of Mechanisms and Trade-Offs with PyTorch. Latin America High Performance Computing Conference (CARLA), 2021, Guadalajara, Mexico.

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models

Distributed Computing

heckpoint

Design Implementati

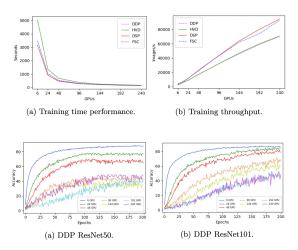
Results

Sensitivity

Experimental Setup Experimental Result

Tradeoffs in Distributed Learning

Faster execution and lower accuracy on Summit supercomputer



Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Distributed Computing

Checkpoint

Design

Implementation Results

Soft-error Sensitivity

Experimental Setup

Experimental Result

Hyperparameter Tuning

Crucial in bringing up performance

Accuracy of DT mechanisms and DL models scaling on GPUs

	R50	LR	R101	LR	V16	LR	V19	LR	R50	LR	R101	LR	V16	LR	V19	LR
GPU				DI	DР				HVD							
6	87/66	α	86/68	β	75/64	α	69/58	β	73/68	α	69/63	α	71/60	α	65/54	α
	78/63	β	79/65		74/61	α	64/55	β	70/65	α	67/61	α	63/55	α	53/46	α
48	69/59	β	74/60	β	61/55	β	56/50	β	68/63	α	63/59	α	45/44	α	30/31	α
96	44/40	β	40/37	β	48/45	γ	52/45	γ	63/59	α	65/61	α	48/47	α	36/32	α
	35/34	β	47/40	γ	46/45	γ	47/37	γ	61/56	α	68/61	α	42/40	α	40/36	α
192	38/37	β	55/50	γ	37/33	γ	27/26	γ	57/55	α	60/58	α	36/30	α	26/25	α
240	48/40	γ	48/40	γ	46/40	γ	35/27	γ	57/53	α	73/64	α	32/27	α	28/20	α
				D	SP							F	SC			
6	71/59	β	72/63	β	74/62	β	70/64	β	86/75	β	79/67	β	77/5 9	β	73/60	β
24	72/63	β	68/60	β	70/63	β	68/57	β	81/76	β	77/74	β	75/63	β	71/64	β
48	66/54	β	61/57	β	52/45	β	51/43	β	77/55	β	75/68	β	71/61	β	70/65	β
96	65/55	β	60/51	β	44/40	β	42/37	β	52/45	β	51/50	β	48/42	β	55/65	β
144	58/51	β	63/56	β	45/41	β	40/36	β	50/44	β	47/42	β	54/44	β	55/50	β
192	60/50	β	64/60	β	41/38	γ	39/37	γ	37/33	α	40/37	α	42/39	β	40/35	β
240	54/48	γ	52/45	γ	40/38	γ	33/31	γ	45/42	α	45/40	α	43/40	β	38/33	β
LR:	$\alpha = 0.0$	$1, \beta$	= 0.00	$1, \gamma$	= 0.000)1										

Parameters: learning rate, patience, batch size

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep

Deep Learning Models

Distributed Computing

Iteration

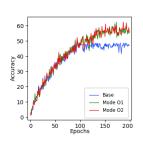
Implementation

Soft-error

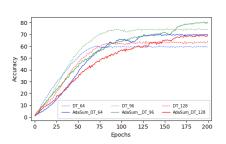
Experimental Setup Experimental Resul

Critical Optimizations

Significant impact on performance



Using mixed precision



Using optimizer

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models

Distributed Computing

Checkpoint

Design

Implementation Results

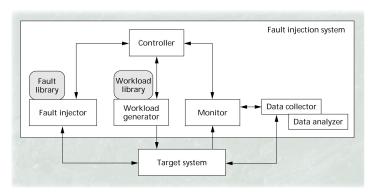
> oft-error ensitivity

Experimental Setup

Experimental Results

Fault Injection

A first categorization



Source: Fault Injection: Techniques and Tools (Hsueh et al)

Types: dynamic (runtime) and static (compile time)

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed

Deep Learning Models
Distributed Computing

Checkpoint Alteration

Design Implementation

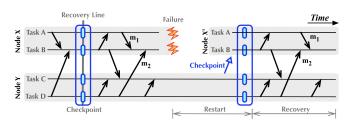
oft-error

ensitivity

xperimental Results

Checkpointing

Dumping state of application



Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models
Distributed Computing

Checkpoint

Design

mplementation

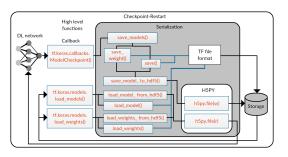
oft-error

ensitivity xperimental Setu

xperimental Results

Checkpoint Alteration

Using checkpoints to inject failures



- Disadvantage: does not capture entire spectrum of faults
- Advantages: controllable and portable

Elvis Rojas, Diego Pérez, Jon C. Calhoun, Leonardo Bautista Gomez, Terry Jones, Esteban Meneses. Understanding Soft Error Sensitivity of Deep Learning Models and Frameworks through Checkpoint Alteration. IEEE International Conference on Cluster Computing (CLUSTER), 2021, Portland, Oregon, United States. Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Learning Models

heckpoint

Design

mplementation

Results

ensitivity

Experimental Results

Failure Injector

Highly configurable

6.41	D
Setting	Description
hdf5_file	The path of the HDF5 file to corrupt
injection_probability	The probability that each injection attempt is successful
injection_type	Either "count" or "percentage"; the former allows an integer number of injection attempts, the latter allows a percentage of the file that can be corrupted
injection_attempts	The value for the injection_type
float_precision	16, 32, or 64 bit precision to use for each corruption of a floating-point number
corruption_mode	 bit. mask. A pattern of bits to flip (e.g., 101101), the first bit to apply the mask in each value is randomly selected from (0 to float precision length(bit.mask)), zeros are padded to both sides of the mask to match float.precision, then we XOR the mask against the floating-point value bit. yange, (first.bit, last.bit) a range of corruptible bits from 0 to float precision -1 scaling_factor, a scale factor to multiply each value
allow_NaN_values	If false, the corrupter does not transform a value to a NaN or INF
locations_to_corrupt	The list of locations to corrupt; all sublocations inside a location will be corrupted
use_random_locations	If true, it will ignore <i>locations_to_corrupt</i> and pick a random location every time

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

✓ Si chct_t.t.vgg_e_5.h6

✓ Gi model_weights

✓ Gi blockl_cornv1

→ Gi blockl_cornv1

→ Gi block2_cornv1

→ Gi block2_cornv1

← Gi block2_cornv2

← Gi block3_cornv2

→ Gi block3_cornv2

> @ block4_conv1
> @ block4_conv2
> @ block4_pool
> @ block5_conv3
> @ block5_conv2
> @ block5_conv2
> @ block5_conv3
@ block5_conv2
> @ fo1
> @ fc1
> @ fatten
@ input_1
> @ podictions

Distributed Deep Learning

Deep Learning Models

Distributed Computing

heckpoint

Design

Implementation

Soft-error

ensitivity

Experimental Setup

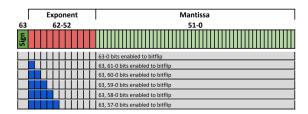
Experimental Results

Conclusion

Works on HDF5 checkpoint files (Chainer, PyTorch, TensorFlow)

IEEE-754 Sensitivity

Impact of bit flip on floating-point numbers



Incidence of NaN and extreme values (N-EV).

		1	Chainer				PyTorch					TensorFlow							
		ResN	et50	VGC	G16	Alex	Net	ResN	et50	VGC	G16	Alex	Net	ResN	et50	VGC	716	Alex	«Net
Bit-flips	Trainings	N-EV	%	N-EV	%	N-EV	%	N-EV	%	N-EV	%	N-EV	%	N-EV	%	N-EV	%	N-EV	%
1	250	- 1	0.4	- 0	0	0	0	-1	0.4	- 1	0.4	0	0	-1	0.4	-0	- 0	1	0.4
10	250	18	7.2	7	2.8	15	6	22	8.8	17	6.8	12	4.8	17	6.8	7	2.8	7	2.8
100	250	122	48.8	32	12.8	96	38.4	142	56.8	163	65.2	119	47.6	167	66.8	83	33.2	106	42.4
1000	250	249	99.6	188	75.2	241	96.4	249	99.6	248	99.2	249	99.6	246	98.4	227	90.8	234	93.6

Critical bit: most significant bit of the exponent

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep

Deep Learning Models Distributed Computing

Checkpoint

Design

Implementation

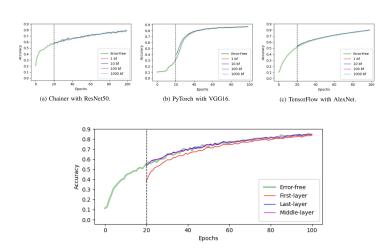
Sensitivity

xperimental Set

Experimental Result

Impact of Bitflips

Deep neural networks are quite resilient



Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep

Deep Learning Models

Checkpoint

Alteration

Implementation

Results

Soft-error Sensitivity

Experimental Setup

Experimental Results

Impact of Other Variables

Bit masks and floating-point precision

Multi-bit mask applied to DL framework training.

		Chain	er	PyTor	ch	TensorFlow		
Bits	Mask	AvgI-Acc	N-EV	AvgI-Acc	N-EV	AvgI-Acc	N-EV	
0	00000000	57.6		30.01		39.2		
3	10001010	57.3	1	29.9	1	36.8	0	
4	01101010	57.1	3	29.9	0	36.6	0	
4	10110010	57.4	0	29.1	1	36.7	1	
5	11110001	53	0	27.2	0	36.5	3	
6	11101101	57.4	1	29.9	2	36.8	3	

Incidence of NaN and extreme values in 16 bit and 32 bit precision.

			16 bits			32 bits	
Bit-flips	DL Train	ResNet(%)	VGG(%)	AlexNet(%)	ResNet(%)	VGG(%)	AlexNet(%)
1	250	0.4	0	0.4	1.2	2.4	2.8
10	250	10.4	11.6	7.2	15.6	17.2	13.2
100	250	59.2	69.2	60	76.8	72.4	68
1,000	250	96	77.2	86	98	78	91.6

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

> eep Learning Models istributed Computing

Checkpoint

Design

Implementation Results

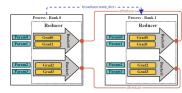
suits

ensitivity

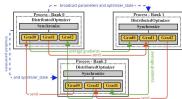
xperimental Setup xperimental Results

Distributed Deep Learning

Implementations



Distributed training process in DDP.



Distributed training process in HVD.

Elvis Rojas, Diego Pérez, Esteban Meneses. **Exploring the Effects of Silent Data Corruption in Distributed Deep Learning Training.** International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2022, Bordeaux, France.

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Distributed Computing

Checkpoint

Design

Implementatio

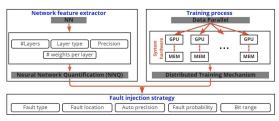
Soft-error Sensitivity

Experimental Setup

Experimental Results

Failure Injection

Adapted to a distributed environment



Failure injection strategy

Effects of a single bit-flip on distributed training

CNI	N DT Mech.	Structure	#BF (Bit-Af)	# Processes	# Trainings	RWC	RWC %
	DDP	Optimizer	1 (Any)	1/8	180	85	47.2
ResN		Model	1 (Any)	1/8	180	109	60.5
Resiv	HVD	Optimizer	1 (Any)	1/8	180	76	42.2
	пур	Model	1 (Any)	1/8	180	103	57.2
	DDP	Optimizer	1 (Any)	1/8	180	82	45.5
VG0		Model	1 (Any)	1/8	180	101	56.1
VGC	HVD	Optimizer	1 (Any)	1/8	180	80	44.4
	пур	Model	1 (Any)	1/8	180	127	70.5

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models
Distributed Computing

Checkpoint

Alteration

Implementation

Results

Sensitivity

Experimental Setup

Experimental Result

Injection Impact

Measured on model and optimizer

Effects of multiple bit-flips on distributed training

					Мо	del			
			DD	P			HV	D	
		1	2	3	4	5	6	7	8
#BF (Bit-Af)	# Proc/TProc	ACC	STD	CV	NaN	ACC	STD	CV	NaN
1 (Any)	4/8	71.102	0.299	0.004	1	69.814	0.123	0.002	1
1 (Any)	8/8	71.073	0.391	0.006	1	69.871	0.099	0.001	0
10 (Any)	1/8	71.128	0.457	0.006	4	69.746	0.077	0.001	4
10 (Any)	4/8	71.202	0.321	0.005	8	69.813	0.139	0.002	3
10 (Any)	8/8	71.272	0.385	0.005	8	69.749	0.14	0.002	2
100 (Any)	1/8	70.992	0.453	0.006	16	69.774	0.223	0.003	16
100 (Any)	4/8	-	-	-	18	69.766	0.183	0.003	14
100 (Any)	8/8	-	-	-	18	69.771	0.104	0.001	12

		ĺ				-	Opti	mizer						
			DDP					HVD						
		9	10	11	12	13	14	15	16	17	18	19	20	
#BF (Bit-Af)	# Proc/TProc	ACC	STD	CV	NaN	AccR	TF	ACC	STD	CV	NaN	AccR	TF	
1 (Any)	4/8	71.217	0.335	0.005	-	-	-	69.772	0.111	0.002	-	-	-	
1 (Any)	8/8	71.044	0.586	0.008	-	-	-	69.768	0.089	0.001	-	-	-	
10 (Any)	1/8	70.705	1.596	0.023	1	1	1	69.757	0.273	0.004	-	-	2	
10 (Any)	4/8	70.596	1.913	0.027	2	-	-	69.768	0.152	0.002	-	-	-	
10 (Any)	8/8	69.043	2.125	0.031	4	3	-	69.82	0.12	0.002	1	-	-	
100 (Any)	1/8	66.776	5.596	0.084	5	5	3	69.048	1.256	0.018	5	2	3	
100 (Any)	4/8	58.17	-	-	16	1	1	69.774	0.079	0.001	7	-	5	
100 (Any)	8/8	-	-	-	17	-	1	68.728	1.792	0.026	6	3	3	

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

> eep Learning Models istributed Computing

Checkpoint

Design

Implementation

Results

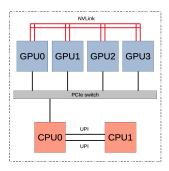
nsitivity

Experimental Setup

Experimental Results

Performance Analysis

Studying sensitivity to noise



Supercomputing node

 $\left(source: \ https://hpcf.umbc.edu/\right)$

Juwels Supercomputer

Elvis Rojas, Michael Knobloch, Nour Daoud, Esteban Meneses, Bernd Mohr. Early Experiences of Noise-Sensitivity Performance Analysis of a Distributed Deep Learning Framework. HPC for International Collaboration between Europe and Latin America Workshop, IEEE Cluster, 2022, Heidelberg, Germany.

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

ributed Computing

Alteration

Implementation

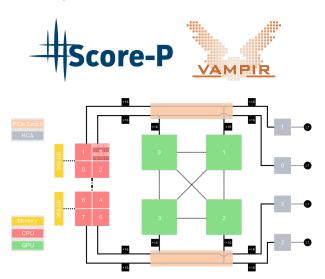
ensitivity

Experimental Setup

Experimental Results

Performance Analysis Tools

Experimental Setup



Architecture of computational node in Juwels-Booster

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

Deep Learning Models
Distributed Computing

Checkpoint Alteration

Implementation

Results

Sensitivity

Experimental Results

Sensitivity and Coexistence

Experimental results

PERFORMANCE OF DL TRAINING (EXECUTION TIME IN SECONDS) IN SINGLE NODE SHARED AND EXCLUSIVE NUMA ENVIRONMENTS.

	Exclusive 1	NUMA Domains	Shared NUMA Doma				
Repetition	No Noise	With Noise	No Noise	With Noise			
MIN	134.22	134.83	143.31	190.37			
Average time	135.77	138.20	145.62	256.27			
Standard Dev.	1.377	2.97	1.45	39.26			

SUMMARY OF THE PERFORMANCE OF DL TRAINING (EXECUTION TIME IN SECONDS) IN TWO NODE SHARED AND EXCLUSIVE NUMA ENVIRONMENTS.

	Exclusive N	UMA Domain	Shared NU	MA Domain
Repetition	No Noise	With Noise	No Noise	With Noise
MIN	81.13	77.92	83.44	213.86
Average time	81.81	81.05	85.58	231.21
Standard Dev.	1.54	1.45	1.36	23.50

Soft-error Sensitivity of Distributed Deep Learning

Esteban Meneses, PhD

Motivation

Distributed Deep Learning

> eep Learning Models istributed Computing

Checkpoint

Design

Implementation

esults

oft-error ensitivity

Experimental Setup

Experimental Results

Acknowledgements

- Prof. Carlos J. Barrios for invitation
- Elvis Rojas, former doctoral student at Costa Rica Institute of Technology
- Diego Pérez, former master's student at Costa Rica Institute of Technology
- Leonardo Bautista at Barcelona Supercomputing Center
- Bernd Mohr at Jülich Supercomputing Center
- Jon Calhoun at Clemson University
- Terry Jones at Oak Ridge National Laboratory
- Members of the Advanced Computing Laboratory at the Costa Rica High Technology Center

Concluding Remarks

- Strong convergence of HPC, AI, and data science
- Checkpoint alteration is a controllable, portable and scalable fault injection approach
- Deep learning resilient to soft errors, albeit there is a critical bit
- Distributed deep learning can coexist with other complementary executions

Thank you! emeneses@cenat.ac.cr

A supercomputer painted by Johannes Vermeer

(Daniel Amador and DALL-E)

